Skip to main content
Log in

Signaling Pathways Regulating Protein Synthesis in the Rat Soleus Muscle in the Early Period of Gravitational Unloading

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The effects of different durations of gravitational unloading (antiorthostatic suspension of rats for 1, 3, or 7 days) on the intensity protein synthesis, ribosomal RNA contents, and intracellular signal pathways involved in controlling protein biosynthesis were studied in rat soleus muscle. The contents of key markers of the anabolic signal pathways (p-AKT, p-GSK-3β, p-p70s6k, p-4E-BP1, p-90RSK1) were determined by gel electrophoresis followed by immunoblotting. The intensity of protein synthesis in soleus muscle was evaluated by puromycin labeling, i.e., the SUnSET method. A significant decrease in protein synthesis intensity in the soleus muscle was seen after 3 and 7 days of gravitational unloading. Gravitational unloading for 3 and 7 days led to a significant decrease in the content of 28S rRNA. Functional unloading for 24 h led to a significant increase in the content of p-p70s6k and a decrease in the content of p-4E-BP1 in the soleus muscle (p < 0.05). By day 3 of suspension, there were decreases in the contents of markers such as phospho-AKT and phospho-p90RSK1 as compared with controls (p < 0.05). After 7 days of gravitational unloading, there were significant decreases in the levels of phosphorylated AKT and GSK-3β compared with the control group (p < 0.05). These results lead to the conclusion that decreases in the intensity of protein synthesis in rat soleus muscle at the early stages of gravitational unloading may be associated with suppression of ribosome biogenesis and decreases in the activity of mTORC1-dependent signal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. A. Lysenko, O. V. Turtikova, E. V. Kachaeva, et al., “Activity of ribosomal kinases in functional unloading of different durations,” Dokl. Akad. Nauk., 434, No. 1, 126–129 (2010).

    Google Scholar 

  2. A. M. Krasnyi, E. A. Lysenko, I. B. Kozlovskaya, et al., “Phosphorylation of elongation factor and expression of its kinase in rat soleus muscle during three days of gravitational unloading,” Dokl. Akad. Nauk., 453, No. 1, 1–3 (2013).

    Google Scholar 

  3. G. Bajotto, Y. Sato, Y. Kitaura, and Y. Shimomura, “Effect of branchedchain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles,” Eur. J. Appl. Physiol., 111, No. 8, 1815–1828 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. S. C. Bodine, “Disuse-induced muscle wasting,” Int. J. Biochem. Cell Biol., 45, 2200–2208 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. J. Cannavino, L. Brocca, M. Sandri, et al., “PGC 1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice,” J. Physiol., 592, No. 20, 4575–4589 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T. Chaillou, T. J. Kirby, and J. J. McCarthy, “Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass,” J. Cell Physiol., 229, 1584–1594 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. E. Dupont, C. Cieniewski-Bernard, B. Bastide, and L. Stevens, “Electrostimulation during hindlimb unloading modulates PI3KAKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, 408–417 (2001).

    Article  Google Scholar 

  8. R. H. Fitts, D. R. Wiley, and J. Widrick, “Physiology of a microgravity environment invited review: microgravity and skeletal muscle,” J. Appl. Physiol., 89, 823–839 (2000).

    CAS  PubMed  Google Scholar 

  9. J. D. Fluckey, E. E. Dupont-Versteegden, D. C. Montague, et al., “A rat resistance exercise regimen attenuates fosses of musculoskeletal mass during hindlimb suspension,” Acta Physiol. Scand., 176, No. 4, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. J. Fluckey, E. Dupont-Versteegden, M. Knox, et al., “Insulin facilitation of muscle protein synthesis following resistance exercise in hindlimb-suspended rats is independent of a rapamycin sensitive pathway,” Am. J. Physiol. Endocrinol. Metab., 287, 1070–1075 (2004).

    Article  Google Scholar 

  11. D. J. Glass, “Signalling pathways that mediate skeletal muscle hypertrophy and atrophy,” Nat. Cell, Biol., 5, 87–90 (2003).

    Article  CAS  Google Scholar 

  12. C. Goodman, D. Mabrey, J. Frey, et al., “Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique,” FASEB J., 25, No. 3, 1028–1039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. T. Gwag, K. Lee, H. Ju, et al., “Stress and signaling responses of rat skeletal muscle to brief endurance exercise during hindlimb unloading: a catch-up process for atrophied muscle,” Cell Physiol. Biochem., 24, No. 5–6, 537–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. T. Hornberger, R. Hunter, S. Kandarian, and K. Esser, “Regulation of translation factors during hindlimb unloading and denervation of skeletal muscle in rats,” Am. J. Physiol. Cell Physiol., 281, 179–187 (2001).

    Google Scholar 

  15. T. A. Hornberger and S. Chien, “Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle,” J. Cell. Biochem., 97, 1207–1216 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. S. R. Kimball and L. S. Jefferson, “Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise,” J. Biol. Chem., 285, 29,027–29,032 (2010).

    Article  CAS  Google Scholar 

  17. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, 227, No. 5259, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. P. Loughna, G. Goldspink, and D. F. Goldspink, “Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles,” J. Appl. Physiol., 61, No. 1, 173–179 (1986).

    CAS  PubMed  Google Scholar 

  19. A. Matsakas and K. Patel, “Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes,” Histol. Histopathol., 24, No. 2, 209–222 (2009).

    CAS  PubMed  Google Scholar 

  20. J. J. McCarthy and K. A. Esser, “Anabolic and catabolic pathways regulating skeletal muscle mass,” Curr. Opin. Clin. Nutr. Metab. Care, 13, No. 3, 230–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Morey-Holton and R. Globus, “Hindlimb unloading rodent model: technical aspects,” J. Appl. Physiol., 92, 1367–1377 (2002).

    Article  PubMed  Google Scholar 

  22. D. Nathans, “Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains,” Proc. Natl. Acad. Sci. USA, 51, 585–592 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Phillips and C. McGlory, “CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis,” J. Physiol., 592, 5341–5343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Reid, R. Judge, and S. Bodine, “CrossTalk opposing view: The dominant mechanism causing disuse muscle atrophy is proteolysis,” J. Physiol., 592, 5345–5347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. J. Rennie, A. Selby, P. Atherton, et al., “Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy,” Scand. J. Med. Sci. Sports, 20, 5–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. P. P. Roux and I. Topisirovic, “Regulation of mRNA translation by signaling pathways,” Cold Spring Harb. Perspect. Biol., 4, a012252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. E. K. Schmidt, “SUnSET, a nonradioactive method to monitor protein synthesis,” Nat. Methods, 6, No. 4, 275–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. T. Sugiura, N. Abe, M. Nagano, et al., “Changes in PKB/Akt and calcineurin signaling during recovery in atrophied soleus muscle induced by unloading,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, No. 5, 1273–1278 (2005).

    Article  Google Scholar 

  29. J. L. Van der Velden, R. C. Langen, M. C. Kelders, et al., “Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta,” Am. J. Physiol. Cell Physiol., 292, No. 5, 1636–1644 (2007).

    Article  Google Scholar 

  30. N. A. Vilchinskaya, T. M. Mirzoev, Y. N. Lomonosova, et al., “Human muscle signaling responses to 3-day head-out dry immersion,” J. Musculoskel. Neuron Interact., 15, No. 3, 286–293 (2015).

    CAS  Google Scholar 

  31. J. S. You, G. B. Anderson, M. S. Dooley, and T. A. Hornberger, “The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization,” Dis. Model Mech., pii: dmm. 019414. Epub (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Mirzoev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 11, pp. 1299–1308, November, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzoev, T.M., Tyganov, S.A., Lomonosova, Y.N. et al. Signaling Pathways Regulating Protein Synthesis in the Rat Soleus Muscle in the Early Period of Gravitational Unloading. Neurosci Behav Physi 47, 359–365 (2017). https://doi.org/10.1007/s11055-017-0405-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0405-3

Keywords

Navigation