Skip to main content

Advertisement

Log in

Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The relationship between biodiversity and ecosystem functioning is a central issue in ecology, especially in aquatic ecosystems due to the ecophysiological characteristics of plankton. Recently, ecologists have obtained conflicting conclusions while analyzing the influence of species diversity on plankton resource use efficiency (RUE) and community turnover. In this study, both phytoplankton and zooplankton communities were investigated seasonally from 2011 to 2013 in Lake Nansihu, a meso-eutrophic and recovering lake in China. The effects of phytoplankton diversity on RUE of phytoplankton (RUEPP), zooplankton (RUEZP), and community turnover were analyzed. Results showed that both phytoplankton species richness and evenness were positively correlated with RUEPP. RUEZP had a negative relationship with phytoplankton species richness, but a weak unimodal relationship with phytoplankton evenness. Cyanobacteria community had the opposite influence on RUEPP and RUEZP. Thus, cyanobacteria dominance will benefit RUEPP in eutrophic lakes, but the growth and reproduction of zooplankton are greatly limited. The strong negative relationship between total phosphorus and RUEZP confirmed these results. Phytoplankton community turnover tended to decrease with increasing phytoplankton evenness, which was consistent with most previous studies. The correlation coefficient between phytoplankton species richness and community turnover was negative, but not significant (p > 0.05). Therefore, phytoplankton community turnover was more sensitive to the variation of evenness than species richness. These results will be helpful in understanding the effects of species diversity on ecosystem functioning in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H (2011) More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. P Natl Acad Sci USA 108:17034–17039

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • Ardyna M, Gosselin M, Michel C, Poulin M, Tremblay JÉ (2011) Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions. Mar Ecol-Prog Ser 442:37–57

    Article  CAS  Google Scholar 

  • Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. P Natl Acad Sci USA 107:10120–10124

    Article  CAS  Google Scholar 

  • Bissinger JE, Montagnes DJ, Sharples J, Atkinson D (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53:487–493

    Article  Google Scholar 

  • Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2010) The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19:651–664

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  Google Scholar 

  • Carney HJ, Elser JJ (1990) Strength of zooplankton-phytoplankton coupling in relation to lake trophic state. In: Tilzer MM, Serruya C (eds) Large lakes. Springer, Berlin Heidelberg, Berlin, pp 615–631

    Chapter  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  Google Scholar 

  • Chase JM, Abrams PA, Grover JP, Diehl S, Chesson P, Holt RD, Richards SA, Nisbet RM, Case TJ (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  Google Scholar 

  • Elser JJ, Goldman CR (1991) Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol Oceanogr 36:64–90

    Article  Google Scholar 

  • Feng YW, Hou K, Pei HY, Hu WR, Ren Y, Wei JL (2015) Desmid community characteristics and its relationship with environmental variables in Nansi Lake and Dongping Lake. Chinese Journal of Ecology 34:1738–1746 (in Chinese)

    Google Scholar 

  • Filstrup CT, Hillebrand H, Heathcote AJ, Harpole WS, Downing JA (2014) Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecol Lett 17:464–474

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703

    Article  Google Scholar 

  • Giller PS, Hillebrand H, Berninger UG, Gessner MO, Hawkins S, Inchausti P et al (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436

    Article  Google Scholar 

  • Gong JX, Duan DX, Wang ZZ, Zhang JL, Liu JP (2010) Research and analysis on the plankton of Nansi Lake. Journal of Yangtze University (Nat Sci Edit) 7:39–42 (in Chinese)

    Google Scholar 

  • Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997) Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnol Oceanogr 42:648–662

    Article  CAS  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  Google Scholar 

  • Hodapp D, Kraft D, Hillebrand H (2014) Can monitoring data contribute to the biodiversity-ecosystem function debate? Evaluating data from a highly dynamic ecosystem. Biodivers Conserv 23:405–419

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  Google Scholar 

  • Hu HJ, Wei YX (2006) The freshwater algae of China: systematic, taxonomy and ecology. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  CAS  Google Scholar 

  • Li J, Yuan GL, Deng XR, Jing XM, Sun TH, Lang XX, Wang GH (2016) Major ion geochemistry of the Nansihu Lake basin rivers, North China: chemical weathering and anthropogenic load under intensive industrialization. Environ Earth Sci 75:1–16

    Article  Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol S 39:615–639

    Article  Google Scholar 

  • Ma J, Qin B, Paerl HW, Brookes JD, Wu P, Zhou J, Deng J, Guo J, Li Z (2015) Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environ Sci Pollut R 22:5041–5049

    Article  CAS  Google Scholar 

  • MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536

    Article  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165

    Article  CAS  Google Scholar 

  • Mora C, Danovaro R, Loreau M (2014) Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments. Sci Rep 4:No:5427

    Article  Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    Article  CAS  Google Scholar 

  • Narwani A, Mazumder A (2012) Bottom-up effects of species diversity on the functioning and stability of food webs. J Anim Ecol 81:701–713

    Article  Google Scholar 

  • O’neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Olli K (1999) Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J Marine Syst 23:145–163

    Article  Google Scholar 

  • Olli K, Ptacnik R, Andersen T, Trikk O, Klais R, Lehtinen S, Tamminen T (2014) Against the tide: recent diversity increase enhances resource use in a coastal ecosystem. Limnol Oceanogr 59:267–274

    Article  Google Scholar 

  • Pei H, Liu Q, Hu W (2010) Phytoplankton community and the relationship with the environment in Nansi Lake, China. Int J Environ Res 5:167–176

    Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Prowe AEF, Pahlow M, Dutkiewicz S, Follows M, Oschlies A (2012) Top-down control of marine phytoplankton diversity in a global ecosystem model. Prog Oceanogr 101:1–13

    Article  Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P, Lepistö L, Willén E, Rekolainen S (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. P Natl Acad Sci USA 105:5134–5138

    Article  CAS  Google Scholar 

  • Roy S, Chattopadhyay J (2007) Toxin-allelopathy among phytoplankton species prevents competitive exclusion. J Biol Syst 15:73–93

    Article  CAS  Google Scholar 

  • Salem ZB, Drira Z, Ayadi H (2015) What factors drive the variations of phytoplankton, ciliate and mesozooplankton communities in the polluted southern coast of Sfax, Tunisia? Environ Sci Pollut R 22:11764–11780

    Article  Google Scholar 

  • Schmidtke A, Gaedke U, Weithoff G (2010) A mechanistic basis for under-yielding in phytoplankton communities. Ecology 91:212–221

    Article  Google Scholar 

  • Schwaderer AS, Yoshiyama K, de Tezanos PP, Swenson NG, Klausmeier CA, Litchman E (2011) Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnol Oceanogr 56:589–598

    Article  Google Scholar 

  • Shu FY, Liu YP, Zhao Y, Wu YP, Li AH (2012) Spatio-temporal distribution of TN and TP in water and evaluation of eutrophic state of Lake Nansi. Environmental Science 33:3748–3752 (in Chinese)

    Google Scholar 

  • Shurin JB, Allen EG (2001) Effects of competition, predation, and dispersal on species richness at local and regional scales. Am Nat 158:624–637

    Article  CAS  Google Scholar 

  • Shurin JB, Arnott SE, Hillebrand H, Longmuir A, Pinel-Alloul B, Winder M, Yan ND (2007) Diversity-stability relationship varies with latitude in zooplankton. Ecol Lett 10:127–134

    Article  Google Scholar 

  • Smetacek V (1998) Biological oceanography: diatoms and the silicate factor. Nature 391:224–225

    Article  CAS  Google Scholar 

  • Striebel M, Behl S, Stibor H (2009) The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology 90:2025–2031

    Article  Google Scholar 

  • Striebel M, Singer G, Stibor H, Andersen T (2012) “Trophic overyielding”: phytoplankton diversity promotes zooplankton productivity. Ecology 93:2719–2727

    Article  Google Scholar 

  • Sukenik A, Quesada A, Salmaso N (2015) Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers Conserv 24:889–908

    Article  Google Scholar 

  • Thompson A, Carter BJ, Turk-Kubo K, Malfatti F, Azam F, Zehr JP (2014) Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host. Environ Microbiol 16:3238–3249

    Article  CAS  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. P Natl Acad Sci USA 94:1857–1861

    Article  CAS  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Wang L, Wang C, Deng D, Zhao X, Zhou Z (2015) Temporal and spatial variations in phytoplankton: correlations with environmental factors in Shengjin Lake, China. Environ Sci Pollut R 22:14144–14156

    Article  CAS  Google Scholar 

  • Weis JJ, Cardinale BJ, Forshay KJ, Ives AR (2007) Effects of species diversity on community biomass production change over the course of succession. Ecology 88:929–939

    Article  Google Scholar 

  • Weyhenmeyer GA, Peter H, Willen E (2013) Shifts in phytoplankton species richness and biomass along a latitudinal gradient-consequences for relationships between biodiversity and ecosystem functioning. Freshw Biol 58:612–623

    Article  Google Scholar 

  • Williamson CE, Fischer JM, Bollens SM, Overholt EP, Breckenridge JK (2011) Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol Oceanogr 56:1603–1623

    Article  Google Scholar 

  • Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–851

    Article  CAS  Google Scholar 

  • Wu ZH, Zhang K, Jin LR, Yang LK, Zhang J (2012) Analysis of spatial distribution of water quality and assessment of water quality improvement in Nansi Lake. Water Resources Protection 28:1–7 (in Chinese)

    Google Scholar 

  • Zhang HY, Zhao L, Tian W, Huang H (2016) Stability of food webs to biodiversity loss: comparing the roles of biomass and node degree. Ecol Indic 67:723–729

    Article  Google Scholar 

  • Zhang QG, Zhang DY (2006) Species richness destabilizes ecosystem functioning in experimental aquatic microcosms. Oikos 112:218–226

    Article  Google Scholar 

  • Zhang ZL, Xin LJ, Liang CL (2007) The analysis of hydrological characteristics and processes of ecosystem in Lake Nansi during the past 50 years. Geogr Res 26:957–966 (in Chinese)

    Google Scholar 

  • Zhang ZS, Huang XF (1991) Research methods of freshwater plankton. Science Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We extend our thanks to Peter Saunders and Yogesh Chander for their assistance with language editing. This study was financially supported by the Chinese National Special Water Programs (No. 2009ZX07210-009, No. 2015ZX07203-011, No. 2015ZX07204-007), Department of Environmental Protection of Shan Dong Province (SDHBPJ-ZB-08, Investigating and evaluating ecological security of Lake Nansihu), and the Chinese Natural Science Foundation (No. 39560023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayong Zhang.

Additional information

Responsible editor: Thomas Hein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Zhang, H., Zhang, J. et al. Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China. Environ Sci Pollut Res 24, 11279–11288 (2017). https://doi.org/10.1007/s11356-017-8758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8758-2

Keywords

Navigation