Skip to main content
Log in

Synthesis and characterization of CdTe nanoparticle-sensitized TiO2 nanotube arrays for photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdTe nanoparticle-sensitized TiO2 nanotube arrays (CdTe/TiO2 NTAs) were prepared by combining the sol–gel method with the electrodeposition method by the aid of anodic aluminum oxide template. The morphology, structure and composition of the materials were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD). The photo response and photocatalytic activity of the materials were investigated by UV–Vis absorption spectroscopy. The results show that the pore diameter of the TiO2 nanotubes is about 120 nm and the wall thickness is approximately 30 nm. CdTe nanoparticles are deposited both inside and in the tube-to-tube voids of the TiO2 nanotubes. XRD analyses identify the anatase structure of TiO2 nanotubes and cubic sphalerite structure of CdTe. Compared with pure TiO2 nanotube film, the CdTe/TiO2 NTAs display a significant increase in absorption coefficient in the visible light and a higher activity for photodegrading Rhodamine B under Xe lamp irradiation with an increase from 34 to 88%. The results also show that CdTe/TiO2 NTAs exhibit better photoelectrochemical performance than TiO2 NTAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Sobhani-Nasab, M. Behpour, Synthesis, characterization, and morphological control of Eu2 Ti2O7 nanoparticles through green method and its photocatalyst application. J. Mater. Sci. 27(11), 11946–11951 (2016)

    Google Scholar 

  2. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci. 27(7), 7548–7553 (2016)

    Google Scholar 

  3. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016)

    Article  Google Scholar 

  4. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. 27(4), 3240–3244 (2015)

    Google Scholar 

  5. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci. 27(1), 474–480 (2015)

    Google Scholar 

  6. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987–100437 (2014)

    Article  Google Scholar 

  7. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90(14), 2011–2075 (2006)

    Article  Google Scholar 

  8. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)

    Article  Google Scholar 

  9. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. 50(13), 2904–2939 (2011)

    Article  Google Scholar 

  10. Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gomez R, The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhySchem 13 (12), 2824–2875 (2012)

    Article  Google Scholar 

  11. Y. Shen, T. Xiong, H. Du, H. Jin, J. Shang, K. Yang, Phosphorous, nitrogen, and molybdenum ternary co-doped TiO2: preparation and photocatalytic activities under visible light. J. Sol-Gel. Sci. Technol. 50(1), 98–102 (2009)

    Article  Google Scholar 

  12. H. Liu, A. Imanishi, Y. Nakato, Mechanisms for Photooxidation reactions of water and organic compounds on carbon-doped titanium dioxide, as studied by photocurrent measurements. J. Phys. Chem. C 111(24), 8603–8610 (2007)

    Article  Google Scholar 

  13. L. Sai, X.Y. Kong, Type II hybrid structures of TiO2 nanorods conjugated with CdS quantum dots: assembly and optical properties. Appl. Phys. A 114(2), 605–609 (2014)

    Article  Google Scholar 

  14. Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A 163(3), 569–580 (2004)

    Article  Google Scholar 

  15. A.K. Rath, M. Bernechea, L. Martinez, G. Konstantatos, Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 23(32), 3712–3717 (2011)

    Article  Google Scholar 

  16. S. Ananthakumar, J. Ramkumar, S.M. Babu, Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices. Renew. Sustain. Energy Rev. 57, 1307–1321 (2016)

    Article  Google Scholar 

  17. T. Toyoda, J. Sato, Q. Shen, Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes. Rev. Sci. Instrum. 74(1), 297–299 (2003)

    Article  Google Scholar 

  18. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113(16), 6327–6359 (2009)

    Article  Google Scholar 

  19. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. Jacs 128(7), 2385–2393 (2006)

    Article  Google Scholar 

  20. R.W. Birkmire, E. Eser, Polycrystalline thin film solar cells: present status and future potential. Annu. Rev. Mater. Sci. 27(1), 625–653 (1997)

    Article  Google Scholar 

  21. Miyake M, Murase K, Hirato T, Awakura Y, Effect of anions on electrodeposition of CdTe from ammoniacal basic solutions. Surf. Coat. Technol. 169170(03), 108–111 (2003)

    Article  Google Scholar 

  22. H. Park, H. Kim, G. Moon, Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 9(2), 411–433 (2015)

    Article  Google Scholar 

  23. Z. Zhang, J.T. Yates Jr., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012)

    Article  Google Scholar 

  24. Q. Wang, X. Yang, L. Chi, M. Cui, Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim. Acta 91(3), 330–336 (2013)

    Article  Google Scholar 

  25. D.G. Diso, F. Fauzi, O.K. Echendu, O.I. Olusola, I.M. Dharmadasa, Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells. J. Mater. Sci. 27, 12464–12472 (2016)

    Google Scholar 

  26. X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng, CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J. Phys. Chem. C 113(18), 7531–7535 (2009)

    Article  Google Scholar 

  27. M. Zhang, Y.N. Wang, E. Moulin, D. Grützmacher, C.J. Chien, P.C. Chang, X. Gao, R. Carius, J.G. Lu, Core–shell CdTe–TiO2 nanostructured solar cell. J. Mater. Chem. 22(21), 10441–10443 (2012)

    Article  Google Scholar 

  28. J.A. Seabold, K. Shankar, RHT Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K.S. Choi, Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20(16), 5266–5273 (2008)

    Article  Google Scholar 

  29. H. Feng, T.T. Tran, L. Chen, L. Yuan, Q. Cai, Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays. Chem. Eng. J. 215–216, 591–599 (2013)

    Article  Google Scholar 

  30. W. Zhang, H. Deng, H. Li, S. Yao, H. Wang, Synthesis and magnetic properties of Ni–Fe/Cu/Co/Cu multilayer nanowire arrays. J. Mater. Sci. 26(4), 2520–2524 (2015)

    Google Scholar 

  31. Z. Miao, D. Xu, J. Ouyang, G. Guo, A. Xinsheng Zhao, Y. Tang, Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2(7), 717–720 (2002)

    Article  Google Scholar 

  32. R. Jiang, C. Chen, S. Zheng, The non-linear fitting method to analyze the measured M–S plots of bipolar passive films. Electrochim. Acta 55(7), 2498–2504 (2010)

    Article  Google Scholar 

  33. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011)

    Article  Google Scholar 

  34. H. Lin, C. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68(1), 1–11 (2006)

    Article  Google Scholar 

  35. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J. Phys. Chem. C 111(28), 10618–10623 (2007)

    Article  Google Scholar 

  36. K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68(3), 125–129 (2006)

    Article  Google Scholar 

  37. M.D. Amiridis, C. Mihut, M. Maciejewski, A. Baiker, The selective catalytic reduction of NO by hydrocarbons over Pt- and Ir-based catalysts. Top. Catal. 28(1), 141–150 (2004)

    Article  Google Scholar 

  38. B. Luo, Y. Deng, Y. Wang, Z. Zhang, M. Tan, Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array: A promising composite nanostructure for solar cell application. J. Alloys Compd. 517, 192–197 (2012)

    Article  Google Scholar 

  39. H. Zhang, X. Quan, S. Chen, H. Yu, N. Ma, “Mulberry-like” CdSe nanoclusters anchored on TiO2 nanotube arrays: a novel architecture with remarkable photoelectrochemical performance. Chem. Mater. 21(14), 3090–3095 (2009)

    Article  Google Scholar 

  40. Q. Kang, Q.Z. Lu, S.H. Liu, L.X. Yang, L.F. Wen, S.L. Luo, Q.Y. Cai, A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia coli. Biomaterials 31(12), 3317–3326 (2010)

    Article  Google Scholar 

  41. István Robel, Masaru Kuno, And, PVK, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129(14), 4136–4137 (2007)

    Article  Google Scholar 

  42. S.S. Soni, M.J. Henderson, J.F. Bardeau, A. Gibaud, Visible-light photocatalysis in titania-based mesoporous thin films. Adv. Mater. 20(8), 1493–1498 (2008)

    Article  Google Scholar 

  43. C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev 39(11), 4206–4219 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, J., Guo, Z. et al. Synthesis and characterization of CdTe nanoparticle-sensitized TiO2 nanotube arrays for photocatalysis. J Mater Sci: Mater Electron 28, 9505–9513 (2017). https://doi.org/10.1007/s10854-017-6694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6694-z

Keywords

Navigation