Skip to main content
Log in

Magnetic Properties of Hematite-Titania Nanocomposites from Ilmenite Leachant Solutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Different Fe2O3/TiO2 nanocomposite ratios have been auto-synthesized from the leaching solution of Egyptian ilmenite ore with and without solvent extraction of soluble iron ions. Hydrolysis-hydrothermal strategy was then implemented for preparation of Fe2O3-TiO2 nanocomposites. The x-ray diffraction results indicated that rutile and hematite were only found at high iron oxide content. Meanwhile, anatase and hematite were the predominant phases at low iron oxide content. High-resolution transmission electron microscopy investigations exhibited nano-rods like morphology and the space lattice distances of TiO2 and Fe2O3 were clearly estimated. Moreover, the chemical composition of different Fe2O3-TiO2 nanocomposites was also elucidated using energy dispersive spectroscopy and Fourier transform infrared analyses techniques. The values of saturation magnetization (M s) and remanent magnetization (M r) were noticeably increased by 17.5% and 18.4% with increasing the Fe2O3/TiO2 molar ratio from 1.0 to 3.0, respectively. Field cooling-warming magnetization studies showed that the Morin transition temperature (T M = 200 K) was consistent with the previously published values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, and H. Liu, Chem. Soc. Rev. 43, 6920 (2014).

    Article  Google Scholar 

  2. M.M.S. Sanad, M.M. Rashad, and K. Powers, Appl. Phys. A 118, 655 (2015).

    Article  Google Scholar 

  3. M.M.S. Sanad, A.E. Shalan, M.M. Rashad, and M.H.H. Mahmoud, Appl. Surf. Sci. 359, 315 (2015).

    Article  Google Scholar 

  4. T. Takamura, P.J. Ko, J. Sharma, R. Yukino, S. Ishizawa, and A. Sandhu, Sensors http://www.ncbi.nlm.nih.gov/pub med/2605374715, 12983 (2015).

  5. H. Hong, J. Lim, C.J. Choi, S.W. Shin, and H.J. Krause, Rev. Sci. Instrum. 85, 013705 (2014).

    Article  Google Scholar 

  6. J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar, T.C. Ho, J. Hopper, and Z. Guo, Appl. Surf. Sci. 302, 198 (2014).

    Article  Google Scholar 

  7. D.K. Yi, S.S. Lee, and J.Y. Ying, Chem. Mater. 18, 2459 (2006).

    Article  Google Scholar 

  8. S.H. Hussein-Al-Ali, M.E. El Zowalaty, M.Z. Hussein, M. Ismail, D. Dorniani, and T.J. Webster, Int. J. Nanomed. 9, 351 (2014).

    Google Scholar 

  9. H.-C. Huang, G.-L. Huang, H.-L. Chen, and Y.-D. Lee, Thin Solid Films 515, 1033 (2006).

    Article  Google Scholar 

  10. K.E. Dekrafft, C. Wang, and W. Lin, Adv. Mater. 24, 2014 (2012).

    Article  Google Scholar 

  11. L. Sun, W. Wu, S. Zhang, Y. Liu, X. Xiao, F. Ren, G. Cai, and C. Jiang, J. Nanosci. Nanotechnol. 13, 5428 (2013).

    Article  Google Scholar 

  12. C.T. Fleacaa, M. Scarisoreanua, I. Morjana, R. Alexandrescua, F. Dumitrachea, C. Luculescua, I.P. Morjana, R. Birjegaa, A.M. Niculescua, G. Filotib, V. Kuncserb, E. Vasilec, V. Danciud, and M. Popa, Appl. Surf. Sci. 302, 198 (2014).

    Article  Google Scholar 

  13. S. Chen, Y. Zhang, W. Han, D. Wellburn, J. Liang, and C. Liu, Appl. Surf. Sci. 283, 422 (2013).

    Article  Google Scholar 

  14. H. Liu, H.K. Shon, X.A. Sun, S. Vigneswaran, and N. Hao, Appl. Surf. Sci. 257, 5813 (2011).

    Article  Google Scholar 

  15. A.K. Patra, A. Dutta, and A. Bhaumik, Appl. Mater. Interfaces 4, 5022 (2012).

    Article  Google Scholar 

  16. E.A. Abdel-Aal, M.H.H. Mahmoud, M.M.S. Sanad, A. Criscuoli, A. Figoli, and E. Drioli, Int. J. Miner. Proc. 96, 62 (2010).

    Article  Google Scholar 

  17. M.H.H. Mahmoud, A.A. Ismail, and M.M.S. Sanad, Chem. Eng. J. 187, 96 (2012).

    Article  Google Scholar 

  18. M.H.H. Mahmoud, A.A. Afifi, and I.A. Ibrahim, Hydrometallurgy 73, 99 (2004).

    Article  Google Scholar 

  19. C.A. Grimes and G.K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications, pp 1–385, p 200, Springer Science & Business Media, 2009, ISBN1441900683, 9781441900685.

  20. D.A.H. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).

    Article  Google Scholar 

  21. M.A. Ahmed, E.E. El-Katori, and Z.H. Gharni, J. Alloys Compd. 553, 19 (2013).

    Article  Google Scholar 

  22. M.M. Ba-Abbad, A.H. Kadhum, A.B. Mohamad, M.S. Takriff, and K. Sopian, Int. J. Electrochem. Sci. 7, 4871 (2012).

    Google Scholar 

  23. H. Xia, W. Xiong, C.K. Lim, Q. Yao, Y. Wang, and J. Xie, Nano Res. 7, 1797 (2014).

    Article  Google Scholar 

  24. S. Dai, Y. Wu, T. Sakai, Z. Du, H. Sakai, and M. Abe, Nanoscale Res. Lett. 5, 1829 (2010).

    Article  Google Scholar 

  25. S. Bagheri, K. Shameli, and S.B. Abd Hamid, J. Chem. 2013, 1 (2013).

    Article  Google Scholar 

  26. L. Chena, X. Pang, Y. Guangshui, and J. Zhang, Adv. Mater. Lett. 1, 75 (2010).

    Article  Google Scholar 

  27. M. Hema, A.Y. Arasi, P. Tamilselvi, and R. Anbarasan, Chem. Sci Trans. 2, 239 (2013).

    Article  Google Scholar 

  28. L. Li, D. Qin, X. Yang, and G. Liu, Polym. Chem. 1, 289 (2010).

    Article  Google Scholar 

  29. S.Z. Mohammadi, M. Khorasani-Motlagh, Sh. Jahani, and M. Yousefi, Int. J. Nanosci. Nanotechnol. 8, 87 (2012).

    Google Scholar 

  30. V. Paredes-Garcia, N. Toledo, J. Denardin, D. Venegas-Yazigi, C. Cruz, E. Spodine, and Z. Luo, J. Chil. Chem. Soc. 58, 2011 (2013).

    Article  Google Scholar 

  31. N. Rinaldi-Montes, P. Gorria, D. Martínez-Blanco, A.B. Fuertes, L.F. Barquín, J. Rodríguez Fernandez, I. de Pedro, M.L. Fdez-Gubieda, J. Alonso, L. Olivi, G. Aquilantie, and J.A. Blanco, Nanoscale 6, 457 (2014).

    Article  Google Scholar 

  32. Q. Pan, K. Huang, S. Ni, F. Yang, S. Lin, and D. He, J. Phys. D Appl. Phys. 42, 015417 (2009).

    Article  Google Scholar 

  33. M.S. Islam, Y. Kusumoto, and M. Abdulla-Al-Mamun, Mater. Lett. 66, 165 (2012).

    Article  Google Scholar 

  34. N.M. Deraz and A. Alarifi, Ceram. Int. 38, 4049 (2012).

    Article  Google Scholar 

  35. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, and S. Mørup, Phys. Rev. B 61, 6826 (2000).

    Article  Google Scholar 

  36. S.A. Jayanthi, D.M.G.T. Nathan, J. Jayashainy, and P. Sagayaraj, Mater. Chem. Phys. 162, 316 (2015).

    Article  Google Scholar 

  37. M. Reufer, H. Dietsch, U. Gasser, B. Grobety, A.M. Hirt, V.K. Malik, and P. Schurtenberger, J. Phys. Condens Matter 16, 065102 (2011).

    Article  Google Scholar 

  38. J.P. Vejpravova, D. Niznansky, V. Vales, B. Bittova, V. Tyrpek, S. Danis, V. Holy, and S. Doyle, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 6, 6 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors would extend their honest appreciation to the Central Metallurgical Research and Development Institute (CMRDI), Cairo, Egypt for its financial support to implement this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. S. Sanad or M. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.M.S., Rashad, M.M. Magnetic Properties of Hematite-Titania Nanocomposites from Ilmenite Leachant Solutions. J. Electron. Mater. 46, 4426–4434 (2017). https://doi.org/10.1007/s11664-017-5438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5438-4

Keywords

Navigation