Skip to main content
Log in

Synthesis and Characterization of Tri-metallic Fe–Co–Ni Catalyst Supported on \(\hbox {CaCO}_{3}\) for Multi-Walled Carbon Nanotubes Growth via Chemical Vapor Deposition Technique

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, multi-walled carbon nanotubes (MWCNTs) were developed via the decomposition of acetylene gas over tri-metallic (Fe/Co/Ni) catalyst supported on \(\hbox {CaCO}_{3}\) in a vapor deposition (CVD) reactor. The effects of mass of \(\hbox {CaCO}_{3}\) support, pre-calcination temperature and pre-calcination time on the yield of catalyst were investigated and optimized using \(2^{3}\) factorial experimental design. The catalyst obtained at the optimal conditions was utilized for MWCNTs production using catalytic chemical vapor deposition method (CCVD). The effects of growing time and deposition temperatures on the yield of the MWCNTs were also studied. The as-synthesized catalyst and MWCNTs were characterized using the following analytical techniques: HRSEM, HRTEM, FTIR, TGA/DTA, EDS, XRD, and BET surface area. The results revealed that the optimal experimental conditions to obtain the maximum catalyst yield of 92.04% were: mass of \(\hbox {CaCO}_{3}\) support of 8 g, pre-calcination temperature of 110 \(^{\circ}\hbox {C}\), and pre-calcination time of 8 h. The TGA and BET analysis showed that the catalyst developed at the optimal conditions were thermally stable with a high surface area of 224.68 \(\hbox {m}^{2}/\hbox {g}\) and particle size distribution in the ranges of 0.1–60 nm. The HRSEM and HRSEM micrograph revealed that the produced CNTs were multi-walled carbon nanotubes in nature comprises homogeneous well-aligned woven-like structure. XRD patterns confirmed that the produced MWCNTs were highly graphitized with little structural defects. This present work indicated that MWCNTs of uniform strands and controlled structure can be produced from tri-metallic (Fe/Co/Ni) catalyst supported on \(\hbox {CaCO}_{3}\) through CCVD technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaedini, G.; Tasirin, S.M.; Aminayi, P.; Yaakob, Z.; Talib, M.Z.M.: Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst. React. Kinet. Mech. Catal. 116, 385–396 (2015)

    Article  Google Scholar 

  2. Amiri, A.; Maghrebi, M.; Baniadam, M.; Zeinali, H.S.: One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl. Surf. Sci. 257, 10261–10266 (2011)

    Article  Google Scholar 

  3. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  4. Jeong, S.W.; Son, S.Y.; Lee, D.H.: Synthesis of multi-walled carbon nanotubes using Co–Fe–Mo/Al\(_{2}\text{O}_{3}\) catalytic powders in a fluidized bed reactor. Adv. Powder Technol. 21, 93–99 (2010)

    Article  Google Scholar 

  5. Voelskow, K.; Becker, M.J.; Xia, W.; Muhler, M.; Turek, T.: The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethene on a cobalt-based catalyst. Chem. Eng. J. 244, 68–74 (2014)

    Article  Google Scholar 

  6. Yang, X.; Zou, T.; Shi, C.; Liu, E.; He, C.; Zhao, N.: Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater. Sci. Eng. A660, 11–18 (2016)

    Article  Google Scholar 

  7. Kavecký, S.; Valúchova, J.; Čaplovičová, M.; Heissler, S.; Šajgalík, P.; Janek, M.: Nontronites as catalyst for synthesis of carbon nanotubes by catalytic chemical vapor deposition. Appl. Clay Sci. 114, 170–178 (2015)

    Article  Google Scholar 

  8. Liu, W.W.; Chai, S.P.; Mohamed, A.R.; Hashim, U.: Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J. Ind. Eng. Chem. 20, 1171–1185 (2014)

    Article  Google Scholar 

  9. Bahgat, M.; Farghali, A.A.; El Rouby, W.M.A.; Khedr, M.H.: Synthesis and modification of multi-walled carbon nanotubes (MWCNTs) for water treatment applications. J. Anal. Appl. Pyrol. 92, 307–313 (2011)

    Article  Google Scholar 

  10. Chiwaye, N.; Jewell, L.L.; Billing, D.G.; Naidoo, D.; Ncube, M.; Coville, N.J.: In situ powder XRD and Mössbauer study of Fe–Co supported on \(\text{CaCO}_{3}\). Mater. Res. Bull. 56, 98–106 (2014)

    Article  Google Scholar 

  11. Motchelaho, M.A.M.; Xiong, H.; Moyo, M.; Jewell, L.L.; Coville, N.J.: Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe–Co supported on \(\text{CaCO}_{3}\): correlation with Fischer–Tropsch catalyst activity. J. Mol. Catal. A Chem. 335, 189–198 (2011)

    Article  Google Scholar 

  12. Duan, X.; Wang, D.; Qian, G.; Walmsley, J.C.; Holmen, A.; Chen, D.; Zhou, X.: Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. J. Energy Chem. 0, 1–7 (2016)

    Google Scholar 

  13. Cheng, J.; Zhang, X.; Luo, Z.; Liu, F.; Ye, Y.; Yin, W.; Liu, W.; Han, Y.: Carbon nanotube synthesis and parametric study using \(\text{CaCO}_{3}\) nanocrystals as catalyst support by CVD. Mater. Chem. Phys. 95, 5–11 (2006)

    Article  Google Scholar 

  14. Chen, C.M.; Dai, Y.M.; Huang, J.W.; Jehng, J.M.: Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808–1820 (2006)

    Article  Google Scholar 

  15. Yeoh, W.M.; Lee, K.Y.; Chai, S.P.; Lee, K.T.; Mohamed, A.: Synthesis of high purity multi-walled carbon nanotubes over Co–Mo/MgO catalyst by the catalytic chemical vapour deposition of methane’. New Carbon Mater. 24, 60041–60044 (2009)

    Article  Google Scholar 

  16. Taleshi, F.: Evaluation of New Processes to Achieve a High Yield of Carbon Nanotubes by CVD Method. Int. Nano Lett. 2, 23–28 (2012)

  17. Mhlanga, S.D.; Mondal, K.C.; Carter, R.; Witcomb, M.J.; Coville, N.J.: The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe–Co/\(\text{CaCO}_{3}\) catalysts. S. Afr. J. Chem. 62, 67–76 (2009)

    Google Scholar 

  18. Schmitt, T.C.; Biris, A.S.; Miller, D.W.; Biris, A.R.; Lupu, D.; Trigwell, S.; Rahman, Z.U.: Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene. Carbon 44, 2032–2038 (2006)

    Article  Google Scholar 

  19. Magrez, A.; Seo, J.W.; Smajda, R.; Mioni, M.; Forró, L.: Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials 3, 4871–4891 (2010)

    Article  Google Scholar 

  20. Li, Z.; Dervishi, E.; Xu, Y.; Ma, X.; Saini, V.; Biris, A.S.; Little, R.; Lupu, D.: Effects of the Fe–Co interaction on the growth of multiwall carbon nanotubes. J. Chem. Phys. 129, 074712–074717 (2008)

    Article  Google Scholar 

  21. Khavarian, M.; Chais, S.P.; Tan, S.H.; Mohamed, A.R.: Effect of different parameters on the morphology of carbon nanotubes structure grown by floating catalyst method. J. Appl. Sci. 11, 2382–2387 (2011)

    Article  Google Scholar 

  22. Kariim, I.; Abdulkareem, AS.; Abubakre, OK.; Mohammed, IA.; Bankole, MT.; Tijani, JO.: Studies on the suitability of alumina as bimetallic catalyst support for MWCNTs growth in a CVD reactor. First International Engineering Conference, School of Engineering and Engineering Technology, Federal University of Technology, Minna, Nigeria, pp. 296–305 (2015)

  23. Allaedini, G.; Aminayi, P.; Tasirin, S.M.: Methane decomposition for carbon nanotube production: optimization of the reaction parameters using response surface methodology. Chem. Eng. Res. Des. 112, 163–174 (2016). (2016)

  24. Hanaei, H.: The interaction effects of synthesis reaction temperature and deposition time on carbon nanotubes (CNTs) yield. Int. J. Mater. Sci. 1, 54–61 (2013)

    Google Scholar 

  25. Maccallini, E.; Tsoufis, T.; Policicchio, A.; La Rosa, S.; Caruso, T.; Chiarello, G.; Colavita, E.; Formoso, V.; Gournis, D.; Agostino, R.G.: A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon 48, 3434–3445 (2010)

    Article  Google Scholar 

  26. Mahmoodi, A.; Ghoranneviss, M.M.; Mojtahedzadeh, S.H.; Haji, H.; Eshghabadi, M.: Various temperature effects on the growth of carbon nanotubes (CNTs) by thermal chemical vapor deposition (TCVD) method. Int. J. Phys. Sci. 7(6), 949–952 (2012)

    Article  Google Scholar 

  27. Mhlanga, S.D.; Coville, N.J.: Iron–cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes. Diam. Relat. Mater. 17, 1489–1493 (2008)

    Article  Google Scholar 

  28. Nair, N.; Kim, W.J.; Braatz, R.D.; Strano, R.D.: Dynamics of suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 24, 1790–1795 (2008)

    Article  Google Scholar 

  29. Al-Rub, R.K.A.; Ashour, A.I.; Tyson, B.M.: On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr. Build. Mater. 35, 647–655 (2012)

    Article  Google Scholar 

  30. Afolabi, A.S.; Abdulkareem, A.S.; Mhlanga, S.D.; Iyuke, S.E.: Synthesis and purification of bimetallic catalysed carbon nanotubes in a horizontal CVD reactor. J. Exp. Nanosci. 6(3), 248–262 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Tijani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkareem, A.S., Kariim, I., Bankole, M.T. et al. Synthesis and Characterization of Tri-metallic Fe–Co–Ni Catalyst Supported on \(\hbox {CaCO}_{3}\) for Multi-Walled Carbon Nanotubes Growth via Chemical Vapor Deposition Technique. Arab J Sci Eng 42, 4365–4381 (2017). https://doi.org/10.1007/s13369-017-2478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2478-2

Keywords

Navigation