Skip to main content

Advertisement

Log in

Pro-NP™ protect against TiO2 nanoparticle-induced phototoxicity in zebrafish model: exploring potential application for skin care

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (TiO2NPs) are used in sunscreen products to protect the skin from the sun’s ultraviolet rays. However, following exposure to sunlight, the photocatalytic activity of TiO2NPs can produce an excess of reactive oxygen species (ROS), causing skin cell damage, triggering an inflammatory response. In zebrafish model, we evaluated how well Pro-NP™ (biodegradable NPs containing superoxide dismutase and catalase) could protect them from TiO2NP-induced photo-oxidative stress. We hypothesized that the antioxidant properties of Pro-NP™ would protect zebrafish embryos from the phototoxic effects of TiO2NPs, improving overall survival and growth. Dechorionated embryos were treated with TiO2NPs alone or co-treated with Pro-NP™, and then exposed to simulated sunlight. Pro-NP™ by itself caused no toxicity; however, for embryos exposed to 100 μg/ml TiO2NPs, zebrafish survival was reduced to ∼40% and at 500 μg/ml to ∼10%. In contrast, at 100 μg/ml TiO2NP, co-treatment with Pro-NP™ increased zebrafish survival in a dose-dependent manner. Co-treatment also improved percent of embryos hatching and resulted in normal growth of zebrafish. On the other hand, embryos treated with TiO2NPs alone developed deformities, had reduced pigmentation, and showed severely truncated growth. Pro-NP™ afforded a greater level of protection against TiO2NP-induced phototoxicity than other antioxidants (vitamin E or N-acetylcysteine) commonly used in topical skin care formulations. We conclude that Pro-NP™ exert significant protective effects against TiO2NP-induced phototoxicity and could be developed as a safe, effective skin care product, used alone or in combination with sunscreen products to protect the skin from sun’s UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011;4:95–112. doi:10.2147/NSA.S19419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jansen R, Wang SQ, Burnett M, Osterwalder U, Lim HW. Photoprotection: part I. Photoprotection by naturally occurring, physical, and systemic agents. J Am Acad Dermatol. 2013a;69(6):853. doi:10.1016/j.jaad.2013.08.021.e1-12; quiz 65-6

    Article  PubMed  Google Scholar 

  3. Gallagher RP, Lee TK, Bajdik CD, Borugian M. Ultraviolet radiation. Chronic Dis Can. 2010;29(Suppl 1):51–68.

    PubMed  Google Scholar 

  4. Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol. 2011;90(6–7):560–4. doi:10.1016/j.ejcb.2010.09.011.

    Article  CAS  PubMed  Google Scholar 

  5. Granstein RD, Matsui MS. UV radiation-induced immunosuppression and skin cancer. Cutis. 2004;74(5 Suppl):4–9.

    PubMed  Google Scholar 

  6. Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013;12(1):54–64. doi:10.1039/c2pp25152c.

    Article  CAS  PubMed  Google Scholar 

  7. Popov AP, Zvyagin AV, Lademann J, Roberts MS, Sanchez W, Priezzhev AV, et al. Designing inorganic light-protective skin nanotechnology products. J Biomed Nanotechnol. 2010;6(5):432–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kullavanijaya P, Lim HW. Photoprotection. J Am Acad Dermatol. 2005;52(6):937–58. quiz 59-62 doi:10.1016/j.jaad.2004.07.063.

    Article  PubMed  Google Scholar 

  9. Sambandan DR, Ratner D. Sunscreens: an overview and update. J Am Acad Dermatol. 2011;64(4):748–58. doi:10.1016/j.jaad.2010.01.005.

    Article  CAS  PubMed  Google Scholar 

  10. Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci. 2011;33(5):385–90. doi:10.1111/j.1468-2494.2011.00654.x.

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang R, Zabar R, Grbovic G, Dolenc D, Yao J, Tisler T, et al. Stability and toxicity of selected chlorinated benzophenone-type UV filters in waters. Acta Chim Slov. 2013;60(4):826–32.

    CAS  PubMed  Google Scholar 

  12. Bunhu T, Kindness A, Martincigh BS. Determination of titanium dioxide in commercial sunscreens by inductively coupled plasma–optical emission spectrometry. S Afr J Chem. 2011;64:139–43.

    CAS  Google Scholar 

  13. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011;123(1):264–80. doi:10.1093/toxsci/kfr148.

    Article  CAS  PubMed  Google Scholar 

  14. Jovanovic B. Review of titanium dioxide nanoparticle phototoxicity: developing a phototoxicity ratio to correct the endpoint values of toxicity tests. Environ Toxicol Chem. 2015;34(5):1070–7. doi:10.1002/etc.2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saliou C, Kitazawa M, McLaughlin L, Yang JP, Lodge JK, Tetsuka T, et al. Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. Free Radic Biol Med. 1999;26(1–2):174–83.

    Article  CAS  PubMed  Google Scholar 

  16. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci. 2005;27(1):17–34. doi:10.1111/j.1467-2494.2004.00241.x.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Zhang M, Han X, Xu H, Zhang B, Yu Q, et al. TiO2 nanoparticles cause cell damage independent of apoptosis and autophagy by impairing the ROS-scavenging system in Pichia Pastoris. Chem Biol Interact. 2016;252:9–18. doi:10.1016/j.cbi.2016.03.029.

    Article  CAS  PubMed  Google Scholar 

  18. Jansen R, Osterwalder U, Wang SQ, Burnett M, Lim HW. Photoprotection: part II. Sunscreen: development, efficacy, and controversies. J Am Acad Dermatol. 2013b;69(6):867. doi:10.1016/j.jaad.2013.08.022.e1-14; quiz 81-2

    Article  PubMed  Google Scholar 

  19. Sha B, Gao W, Cui X, Wang L, Xu F. The potential health challenges of TiO2 nanomaterials. J Appl Toxicol. 2015;35(10):1086–101. doi:10.1002/jat.3193.

    Article  CAS  PubMed  Google Scholar 

  20. Gasparro FP. Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy. Environ Health Perspect. 2000;108(Suppl 1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Autier P. Sunscreen abuse for intentional sun exposure. Br J Dermatol. 2009;161(Suppl 3):40–5. doi:10.1111/j.1365-2133.2009.09448.x.

    Article  PubMed  Google Scholar 

  22. Poljsak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract. 2012;2012:135206. doi:10.1155/2012/135206.

    PubMed  PubMed Central  Google Scholar 

  23. Leite-Silva VR, Le Lamer M, Sanchez WY, Liu DC, Sanchez WH, Morrow I, et al. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm. 2013;84(2):297–308. doi:10.1016/j.ejpb.2013.01.020.

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM. A sunblock based on bioadhesive nanoparticles. Nat Mater. 2015;14(12):1278–85. doi:10.1038/nmat4422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small. 2009;5(4):511–20. doi:10.1002/smll.200800798.

    Article  CAS  PubMed  Google Scholar 

  26. Feng X, Zhang S, Lou X. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy. Colloids Surf B Biointerfaces. 2013;107:220–6. doi:10.1016/j.colsurfb.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  27. Veronovski N, Lesnik M, Lubej A, Verhovsek D. Surface treated titanium dioxide nanoparticles as inorganic UV filters in sunscreen products. Acta Chim Slov. 2014;61(3):595–600.

    CAS  PubMed  Google Scholar 

  28. Garvas M, Testen A, Umek P, Gloter A, Koklic T, Strancar J. Protein corona prevents TiO2 phototoxicity. PLoS One. 2015;10(6):e0129577. doi:10.1371/journal.pone.0129577.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ozmen M, Gungordu A, Erdemoglu S, Ozmen N, Asilturk M. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. Aquat Toxicol. 2015;165:144–53. doi:10.1016/j.aquatox.2015.05.020.

    Article  CAS  PubMed  Google Scholar 

  30. Siddhapara KS, Shah DV. Experimental study of transition metal ion doping on TiO2 with photocatalytic behavior. J Nanosci Nanotechnol. 2014;14(8):6337–41.

    Article  CAS  PubMed  Google Scholar 

  31. Manzo S, Buono S, Rametta G, Miglietta M, Schiavo S, Di Francia G. The diverse toxic effect of SiO (2) and TiO (2) nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ Sci Pollut Res Int. 2015;22(20):15941–51. doi:10.1007/s11356-015-4790-2.

    Article  CAS  PubMed  Google Scholar 

  32. Brezova V, Gabcova S, Dvoranova D, Stasko A. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J Photochem Photobiol B. 2005;79(2):121–34. doi:10.1016/j.jphotobiol.2004.12.006.

    Article  CAS  PubMed  Google Scholar 

  33. Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol. 2016;14(1):65. doi:10.1186/s12951-016-0217-6.

    Article  Google Scholar 

  34. Clemente Z, Castro VL, Moura MA, Jonsson CM, Fraceto LF. Toxicity assessment of TiO (2) nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol. 2014;147:129–39. doi:10.1016/j.aquatox.2013.12.024.

    Article  CAS  PubMed  Google Scholar 

  35. Xiong D, Fang T, Yu L, Sima X, Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ. 2011;409(8):1444–52. doi:10.1016/j.scitotenv.2011.01.015.

    Article  CAS  PubMed  Google Scholar 

  36. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 1997;418(1–2):87–90.

    Article  CAS  PubMed  Google Scholar 

  37. Bar-Ilan O, Louis KM, Yang SP, Pedersen JA, Hamers RJ, Peterson RE, et al. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology. 2012;6(6):670–9. doi:10.3109/17435390.2011.604438.

    Article  CAS  PubMed  Google Scholar 

  38. Gali NK, Ning Z, Daoud W, Brimblecombe P. Investigation on the mechanism of non-photocatalytically TiO2 -induced reactive oxygen species and its significance on cell cycle and morphology. J Appl Toxicol. 2016;36(10):1355–63. doi:10.1002/jat.3341.

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett. 2009;191(1):1–8. doi:10.1016/j.toxlet.2009.05.020.

    Article  CAS  PubMed  Google Scholar 

  40. Ananthaswamy HN, Pierceall WE. Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol. 1990;52(6):1119–36.

    Article  CAS  PubMed  Google Scholar 

  41. Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl Biochem Biotechnol. 2008;151(2–3):565–77. doi:10.1007/s12010-008-8232-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singhal A, Morris VB, Labhasetwar V, Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4:e903. doi:10.1038/cddis.2013.362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;67(5):1013–24. doi:10.1016/j.jaad.2012.02.009.

    Article  CAS  PubMed  Google Scholar 

  44. Wang SQ, Osterwalder U, Jung K. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants. J Am Acad Dermatol. 2011;65(3):525–30. doi:10.1016/j.jaad.2010.07.009.

    Article  PubMed  Google Scholar 

  45. Paterson G, Ataria JM, Hogue ME, Burns DC, Metcalfe CD. The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere. 2011;82(7):1002–9. doi:10.1016/j.chemosphere.2010.10.068.

    Article  CAS  PubMed  Google Scholar 

  46. Samaee SM, Rabbani S, Jovanovic B, Mohajeri-Tehrani MR, Haghpanah V. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf. 2015;116:121–8. doi:10.1016/j.ecoenv.2015.03.012.

    Article  CAS  PubMed  Google Scholar 

  47. Stees M, Adjei I, Labhasetwar V. A method for quantification of penetration of nanoparticles through skin layers using near-infrared optical imaging. Cosmetics. 2015;2:225–35.

    Article  CAS  Google Scholar 

  48. Moan J, Grigalavicius M, Baturaite Z, Dahlback A, Juzeniene A. The relationship between UV exposure and incidence of skin cancer. Photodermatol Photoimmunol Photomed. 2015;31(1):26–35. doi:10.1111/phpp.12139.

    Article  PubMed  Google Scholar 

  49. Pandel R, Poljsak B, Godic A, Dahmane R. Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol. 2013;2013:930164. doi:10.1155/2013/930164.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK conducted the experiments; MS formulated Pro-NP™; MK and BK compiled data and prepared the initial manuscript draft; SV carried out UV absorption of Pro-NP™ and particle size characterization; RP, GM, VL designed and supervised the study; and VL compiled final data and wrote the manuscript with contributions from co-authors. Authors reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Vinod Labhasetwar.

Ethics declarations

Conflict of interest

The study was funded by ProTransit Nanotherapy, LLC, Omaha, NE, a start-up company based on patented work done at the University of Nebraska Medical Center. GM and VL are co-founders of ProTransit Nanotherapy and have an equity interest in the company. ProTransit can make Pro-NP™ available to potential investigators under material transfer agreement. Potential conflict of interest matters for VL are managed according to guidelines of the Conflict of Interest committee of Cleveland Clinic.

Ethical statement

The use of zebrafish and maintenance plan were approved by the Research Animal Resources Center of the University of Wisconsin-Madison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MS., Stees, M., Karuturi, B.V.K. et al. Pro-NP™ protect against TiO2 nanoparticle-induced phototoxicity in zebrafish model: exploring potential application for skin care. Drug Deliv. and Transl. Res. 7, 372–382 (2017). https://doi.org/10.1007/s13346-017-0374-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0374-7

Keywords

Navigation