Skip to main content
Log in

Effect of electrolyte composition on the morphological structures of dendritic copper powders prepared by a spontaneous galvanic displacement reaction

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dendritic copper powders are highly desirable in many applications, including electromagnetic interference shielding and conductive pastes, because of low cost and high conductivity. We prepared dendritic copper powders using the galvanic displacement reaction between the Al and Cu-ions in aqueous solution. This method is very simple and spontaneous at room temperature. During the process, the morphology of the copper powders is strongly affected by several variables, such as the displacement reaction rate and the amount of hydrogen evolution due to the reduction of proton. The effect of the different composition of electrolytes to morphological changes of copper powders was investigated in this study. In addition, the effects of concentration of chlorine ion, pH, termination time, and additives were monitored, which resulted in different morphology. Considering different applications, such as sensors, catalysts, and conductive pastes, the controllability of the morphology of dendritic copper powders plays an important role in achieving high performance in desired applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.K. Kim, G.-J. Lee, M.K. Lee and C.K. Rhee, Powder Technol., 263, 1 (2014).

    Article  CAS  Google Scholar 

  2. X. G. Cao and H.Y. Zhang, Electron. Mater. Lett., 8(4), 467 (2012).

    Article  CAS  Google Scholar 

  3. R. Zhang, W. Lin, K. Lawrence and C.P. Wong, Int. J. Adhes. Adhes., 30, 403 (2010).

    Article  Google Scholar 

  4. H.T. Hai, H. Takamura and J. Koike, J. Alloy. Compd., 564, 71 (2013).

    Article  CAS  Google Scholar 

  5. M. Wu, B. Lin, Y. Cao, J. Song, Y. Sun, H. Yang and X. Zhang, J. Mater. Sci.-Mater. El., 24, 4913 (2013).

    Article  CAS  Google Scholar 

  6. I. Khatri, A. Hoshino, F. Watanabe, Q. Liu, R. Ishikawa, K. Ueno and H. Shirai, Thin Solid Films, 558, 306 (2014).

    Article  CAS  Google Scholar 

  7. M. Theuring, M. Vehse, K. Maydell and C. Agert, Thin Solid Films, 558, 294 (2014).

    Article  CAS  Google Scholar 

  8. H. Nishikawa, S. Mikami, K. Miyake, A. Aoki and T. Takemoto, Mater. Trans., 51(10), 1785 (2010).

    Article  CAS  Google Scholar 

  9. Z. Chen, X. Zhang, J. Fang, J. Liang, X. Liang, J. Sun, D. Zhang, N. Wang, H. Zhao, X. Chen, Q. Huang, C. Wei and Y. Zhao, Appl. Energy, 135, 158 (2014).

    Article  CAS  Google Scholar 

  10. T. L. Yang, K.Y. Huang, S. Yang, H. H. Hsieh and C.R. Kao, Sol. Energy Mat. Sol. C., 123, 139 (2014).

    Article  CAS  Google Scholar 

  11. J.-T. Tsai and S.-T. Lin, J. Alloy. Compd., 548, 105 (2013).

    Article  CAS  Google Scholar 

  12. X. Wen, Y.-T. Xie, M.W. C. Mak, K.Y. Cheung, X. Li, R. Renneberg and S. Yang, Langmuir, 22, 4836 (2006).

    Article  CAS  Google Scholar 

  13. J. Fang, H. You, P. Kong, Y. Yi, X. Song and B. Ding, Cryst. Growth Des., 7(5), 864 (2007).

    Article  CAS  Google Scholar 

  14. S. Lv, H. Suo, X. Zhao, C. Wang, S. Jing, T. Zhou, Y. Xu and C. Zhao, Solid State Commun., 149, 1755 (2009).

    Article  CAS  Google Scholar 

  15. S. Lu, H. Suo, H. Wang, C. Wang, J. Wang, Y. Xu and C. Zhao, Solid State Sci., 12, 1287 (2010).

    Article  Google Scholar 

  16. S. Lu, H. Suo, T. Zhou, C. Wang, S. Jing, Q. Fu, Y. Xu and C. Zhao, Solid State Commun., 149, 227 (2009).

    Article  Google Scholar 

  17. J.R. Kramer, N. H. Werstiuk and B. Ni, J. Phys. Chem. A, 110, 273 (2006).

    Article  CAS  Google Scholar 

  18. Y. Zhuo, W. Sun, L. Dong and Y. Chu, Appl. Surf. Sci., 257, 10395 (2011).

    Article  CAS  Google Scholar 

  19. R. Liu and A. Sen, Chem. Mater., 24, 48 (2012).

    Article  CAS  Google Scholar 

  20. X. Chen, C.-H. Cui, Z. Guo, J.-H. Liu, X.-J. Huang and S.-H. Yu, Small, 7(7), 858 (2011).

    Article  CAS  Google Scholar 

  21. R. Liu, S. Li, X. Yu, G. Zhang, Y. Ma, J. Yao, B. Keita and L. Nadjo, Cryst. Growth Des., 11, 3424 (2011).

    Article  CAS  Google Scholar 

  22. T.-K. Huang, T.-H. Cheng, M.-Y. Yen, W.-H. Hsiao, L.-S. Wang, F.-R. Chen, J.-J. Kai, C.-Y. Lee and H.-T. Chiu, Langmuir, 23, 5722 (2007).

    Article  CAS  Google Scholar 

  23. M.N. Nadagouda and R.S. Varma, Crys. Growth Des., 7(12), 2582 (2007).

    Article  CAS  Google Scholar 

  24. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, J. Colloid Interface Sci., 364, 574 (2011).

    Article  CAS  Google Scholar 

  25. H.T. Hai, J.G. Ahn, D. J. Kim, J.R. Lee, H.S. Chung and C.O. Kim, Surf. Coat. Technol., 201, 3788 (2006).

    Article  CAS  Google Scholar 

  26. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 57, 3987 (2003).

    Article  CAS  Google Scholar 

  27. G. Barcaro, A. Fortunelli, G. Rossi, F. Nita and R. Ferrando, J. Phys. Chem. B., 110, 23197 (2006).

    Article  CAS  Google Scholar 

  28. X.G. Cao and H.Y. Zhang, Electron. Mater. Lett., 8(4), 467 (2012).

    Article  CAS  Google Scholar 

  29. J. Zhao, D. Zhang and J. Zhao, J. Solid State Chem., 184, 2339 (2011).

    Article  CAS  Google Scholar 

  30. X.G. Cao and H.Y. Zhang, Appl. Surf. Sci., 264, 756 (2013).

    Article  CAS  Google Scholar 

  31. H.T. Hai, H. Takamura and J. Koike, J. Alloy Compd., 564, 71 (2013).

    Article  CAS  Google Scholar 

  32. M. Wu, B. Lin, Y. Cao, J. Song, Y. Sun, H. Yang and X. Zhang, J. Mater. Sci.-Mater. Electron., 24, 4913 (2013).

    Article  CAS  Google Scholar 

  33. Y. Kang and F. Chen, J. Appl. Electrochem., 43, 667 (2013).

    Article  Google Scholar 

  34. K. Chen, D. Ray, Y. Peng and Y. Hsu, Curr. Appl. Phys., 13, 1496 (2013).

    Article  Google Scholar 

  35. X.G. Cao and H.Y. Zhang, Powder Technol., 226, 53 (2012).

    Article  CAS  Google Scholar 

  36. J. Zhao, D. Zhang and X. Song, Appl. Surf. Sci., 258, 7430 (2012).

    Article  CAS  Google Scholar 

  37. V. Mancier, C.R. Bertrand, J. Dille, J. Michel and P. Fricoteaux, Ultrason. Sonochem., 17, 690 (2010).

    Article  CAS  Google Scholar 

  38. C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen and H.-Y. Lee, Corros. Sci., 74, 123 (2013).

    Article  CAS  Google Scholar 

  39. S. Cherevko and C.-H. Chung, Talanta, 80, 1371 (2010).

    Article  CAS  Google Scholar 

  40. S. Arai and T. Kitamura, ECS Electrochem. Lett., 3(5), D7 (2014).

    Article  CAS  Google Scholar 

  41. R. Qiu, H. G. Cha, H. B. Noh, Y. B. Shim, X. L. Zhang, R. Qiao, D. Zhang, Y. I. Kim, U. Pal and Y. S. Kang, J. Phys. Chem. C, 113, 15891 (2009).

    Article  CAS  Google Scholar 

  42. S. S. Djokić and N. S. Djokić, J. Electrochem. Soc., 158(4), D204 (2011).

    Article  Google Scholar 

  43. S.-H. Wu and D.-H. Chen, J. Colloid Interface Sci., 273, 165 (2004).

    Article  CAS  Google Scholar 

  44. C. Yan and D. Xue, Cryst. Growth Des., 8(6), 1849 (2008).

    Article  CAS  Google Scholar 

  45. Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li and M. Li, Adv. Funct. Mater., 17, 933 (2007).

    Article  CAS  Google Scholar 

  46. X. Zhang, G. Wang, X. Liu, H. Wu and B. Fang, Cryst. Growth Des., 4, 1430 (2008).

    Article  Google Scholar 

  47. Z.Y. Zhang, C. G. Hu, B. Feng, C. H. Zheng, X. S. He and X. Wang, J. Supercond. Nov. Magn., 23, 893 (2010).

    Article  CAS  Google Scholar 

  48. S. Mahima, C. Karthik, S. Garg, R. Mehta, R. Teki, N. Ravishankar and G. Ramanath, Cryst. Growth Des., 10, 3925 (2010).

    Article  CAS  Google Scholar 

  49. Y. Zeng, T. Li, M. Fu, S. Jiang and G. Zhang, J. Alloy. Compd., 585, 277 (2014).

    Article  CAS  Google Scholar 

  50. L.-M. Huang, L.-M. Luo, X.-Y. Ding, G.-N. Luo, X. Zan, J.-G. Cheng and Y.-C. Wu, Powder Technol., 258, 216 (2014).

    Article  CAS  Google Scholar 

  51. H.C. Shin, J. Dong and M. Liu, Adv. Mater., 15(19), 1610 (2003).

    Article  CAS  Google Scholar 

  52. K. Zhuo, M.-G. Jeong and C.-H. Chung, RSC Adv., 3, 12611 (2013).

    Article  CAS  Google Scholar 

  53. P. L. Soni and Vandna Soni, Coordination Chemistry, Taylor & Francis Group, Boca Raton, FL (2013).

    Google Scholar 

  54. M. Schlesinger and M. Paunovic, Modern electroplating, New York, Wiley, 5th Ed. (2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Hwa Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, K., An, C.Y., Kannan, P.K. et al. Effect of electrolyte composition on the morphological structures of dendritic copper powders prepared by a spontaneous galvanic displacement reaction. Korean J. Chem. Eng. 34, 1483–1489 (2017). https://doi.org/10.1007/s11814-017-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0023-3

Keywords

Navigation