Skip to main content
Log in

Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic–Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bifunctional magnetic–plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization (M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.S. Wang, Z.H. Shah, S.F. Zhang, and R.W. Lu, Nanoscale 6, 4418 (2014).

    Article  Google Scholar 

  2. D.T.T. Nguyen, T.H. Au, Q.C. Tong, M.H. Luong, A.L. Pelissier, K. Montes, H.M. Ngo, M.T. Do, D.B. Do, D.T. Trinh, T.H. Nguyen, B. Palpant, C.C. Hsu, I.L. Rak, and N.D. La, J. Sci. Adv. Mater. Devices 1, 18 (2016).

    Article  Google Scholar 

  3. L. Cai, W. Wang, X.Y. Yang, P. Zhou, H.W. Tang, J. Rao, and D.W. Pang, Austin J. Anal. Pharm. Chem. 1, 1027 (2014).

    Google Scholar 

  4. M.H. Phan, J. Alonso, H. Khurshid, P.L. Kelley, S. Chandra, K.S. Repa, Z. Nemati, R. Das, O. Iglesias, and H. Srikanth, Nanomaterials 6, 221 (2016).

    Article  Google Scholar 

  5. X. Wu, J. Chen, M. Wu, and J.X. Zhao, Theranostics 5, 322 (2015).

    Article  Google Scholar 

  6. Y. Hu, R.Z. Wang, S. Wang, L. Ding, J.C. Li, Y. Luo, X.L. Wang, M.W. Shen, and X.Y. Shi, Sci. Rep. 6, 28325 (2016).

    Article  Google Scholar 

  7. R. Das, N. Rinaldi-Montes, J. Alonso, Z. Amghouz, E. Garaio, J.A. García, P. Gorria, J.A. Blanco, M.H. Phan, and H. Srikanth, ACS Appl. Mater. Interfaces 8, 25162 (2016).

    Article  Google Scholar 

  8. C. Sun, R. Sze, and M. Zhang, J. Biomed. Mater. Res., Part A 78, 550 (2006).

    Article  Google Scholar 

  9. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  Google Scholar 

  10. J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, Theor. Chem. Acc. 125, 319 (2010).

    Article  Google Scholar 

  11. D.V. Quy, N.M. Hieu, P.T. Tra, N.H. Nam, N.H. Hai, N.T. Son, P.T. Nghia, N.T.V. Anh, T.T. Hong, and N.H. Luong, J. Nanomater. 2013, 1 (2013). doi:10.1155/2013/603940.

  12. Y. Pham, A.T.V. Nguyen, T.N. Phan, L.L. Chu, D.Q. Nguyen, H.M. Nguyen, N.H. Nam, and N.H. Luong, Int. J. Nanotechnol. 12, 335 (2013).

    Article  Google Scholar 

  13. X.D. Zhang, H.Q. Zhang, X. Liang, J.X. Zhang, W. Tao, X.B. Zhu, D.F. Chang, X.W. Zeng, G. Liu, and L. Mei, Mol. Pharm. 13, 2578 (2016).

    Article  Google Scholar 

  14. Y. Xie, D. Liu, C.L. Cai, X.J. Chen, Y. Zhou, L.L. Wu, Y.W. Sun, H.L. Dai, X.M. Kong, and P.F. Liu, Int. J. Nanomed. 11, 3557 (2016).

    Article  Google Scholar 

  15. Y.H. Lien and T.M. Wu, J. Colloid Interface Sci. 326, 517 (2008).

    Article  Google Scholar 

  16. Y.Q. Ge, Y. Zhang, S.Y. He, F. Nie, G.J. Teng, and N. Gu, Nanoscale Res. Lett. 4, 287 (2009).

    Article  Google Scholar 

  17. D.K. Kim, M. Mikhaylova, F.H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, and M. Muhammed, Chem. Mater. 15, 4343 (2003).

    Article  Google Scholar 

  18. A. Narita, K. Naka, and Y. Chujo, Colloids Surf. A Physicochem Eng. Asp. 336, 46 (2009).

    Article  Google Scholar 

  19. D. Yang, M. Tian, W.C. Wang, D.D. Li, R.Y. Li, H.L. Liu, and L.Q. Zhang, Electrochim. Acta 87, 9 (2013).

    Article  Google Scholar 

  20. K. Wang, X.L. Zhang, C.Y. Niu, Y.Q. Wang, and A.C.S. Appl, Mater. Interfaces 6, 1272 (2014).

    Article  Google Scholar 

  21. L. Babes, B. Denizot, G. Tanguy, J.J.L. Jeune, and P. Jallet, J. Colloid Interface Sci. 212, 474 (1999).

    Article  Google Scholar 

  22. R.G. Acres, A.V. Ellis, J. Alvino, C.E. Lenahan, D.A. Khodakov, G.F. Metha, and G.G. Andersson, J. Phys. Chem. C 116, 6289 (2012).

    Article  Google Scholar 

  23. T.Y. Cheang, B. Tang, A.W. Xu, G.Q. Chang, Z.J. Hu, W.L. He, Z. Xing, J.B. Xu, M. Wang, and S.M. Wang, Int. J. Nanomed. 7, 1061 (2012).

    Google Scholar 

  24. M. Mahdavi, M.B. Ahmad, M.J. Haron, Y. Gharayebi, K. Shameli, and B. Nadi, J. Inorg. Organomet. Polym. 23, 599 (2013).

    Article  Google Scholar 

  25. D. Maity and D.C. Agrawal, J. Magn. Magn. Mater. 308, 46 (2007).

    Article  Google Scholar 

  26. Z. Hassannejad, M.E. Khosroshahi, and M. Firouzi, Nanosci. Technol. 1, 1 (2014). http://www.symbiosisonlinepublishing. com/nanoscience-technology/nanoscience-technology09.php.

  27. Y.S. Li, J.S. Church, A.L. Woodhead, and F.S. Moussa, Spectrochim. Acta, Part A 76, 484 (2010).

    Article  Google Scholar 

  28. L. Etgar, G. Schuchardt, D. Costenaro, F. Carniato, C. Bisio, S.M. Zakeeruddin, M.K. Nazeeruddin, L. Marchese, and M. Graetzel, J. Mater. Chem. A 1, 10142 (2013).

    Article  Google Scholar 

  29. Y. Li, C.X. Chen, J.T. Li, Y. Yang, and Z.M. Lin, Nanoscale Res. Lett. 6, 454 (2011).

    Article  Google Scholar 

  30. H.E. Ghandoor, H.M. Zidan, M.M.H. Khalil, and M.I.M. Ismail, Int. J. Electrochem. Sci. 7, 5734 (2012).

    Google Scholar 

  31. J. Chen, Z. Guo, H.B. Wang, M. Gong, X.K. Kong, P. Xia, and Q.W. Chen, Biomaterials 34, 571 (2013).

    Article  Google Scholar 

  32. S.H. Zhan, Y. Yang, Z.Q. Shen, J.J. Shan, Y. Li, S.S. Yang, and D.D. Zhu, J. Hazard. Mater. 274, 115 (2014).

    Article  Google Scholar 

  33. M. Kooti, S. Saiahi, and H. Motamedi, J. Magn. Magn. Mater. 333, 138 (2013).

    Article  Google Scholar 

  34. S.M. Yusuf, J.M.D. Teresa, M.D. Mukadam, J. Kohlbrecher, M.R. Ibarra, J. Arbiol, P. Sharma, and S.K. Kulshreshtha, Phys. Rev. B 74, 224428 (2006).

    Article  Google Scholar 

  35. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, and A. Kostikas, Phys. Rev. B 45, 9778 (1992).

    Article  Google Scholar 

  36. S. Link and M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

    Article  Google Scholar 

  37. J. Gao, X.Y. Huang, H. Liu, F. Zan, and J. Ren, Langmuir 28, 4464 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Hoang Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, D.T., Sai, D.C., Luu, Q.M. et al. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic–Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method. J. Electron. Mater. 46, 3646–3653 (2017). https://doi.org/10.1007/s11664-017-5421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5421-0

Keywords

Navigation