Skip to main content

Advertisement

Log in

Nanostructured ferrite/graphene/polyaniline using for supercapacitor to enhance the capacitive behavior

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg−1, an energy density of 240 Wh kg−1 at 1 A g−1, and a power density of 2680 Wkg−1 at 1 A g−1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Source 158:1523–1532

    Article  CAS  Google Scholar 

  2. Chen J, Jia C, Wan Z (2014) Novel hybrid nanocomposite based on poly(3,4- ethylene dioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth Met 189:69–76

    Article  CAS  Google Scholar 

  3. Puscas AM, Carp M, Borza P, Székely I (2009) Measurement considerations on some parameters of supercapacitors. Acta Univ Sapientiae, J Elect Mech Eng 1:65–75

    Google Scholar 

  4. Kurzweil P, Chwistek M, Gallay R (2006) 2nd European Symposium on Supercapacitors & Applications (ESSCAP), Lausanne, 2–3 November 2006

  5. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun 11:1158–1161

    CAS  Google Scholar 

  6. Gomez-Navarro C, Weitz RT, Bittner AM, Scolai M, News A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  CAS  Google Scholar 

  7. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  8. Zhang K, Zhang L, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  9. Ye JS, Cui HF, Litu X, Lim TM, Zhang WD, Sheu FS (2005) Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1:560–565

    Article  CAS  Google Scholar 

  10. Adekunle AS, Ozoemena KI, Mamba BB, Agboola BO, Oluwatobi OS (2011) Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from WCNTS/nickel oxide nanocomposite. Int J Electrochem Sci 6:4760–4774

    CAS  Google Scholar 

  11. Lee YH, An KH, Lee JY, Lim SC (2007) Carbon nanotube-based supercapacitor in: H.S. Nalwa (ed) Encycl. Nanosc. Nanotechnol 1:625–634

  12. Adekunle AS, Ozoemena KI (2008) Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers. Electrochim Acta 53:5774–5782

    Article  CAS  Google Scholar 

  13. Adekunle AS, Ozoemena KI (2008) Insights into the electro-oxidation of hydrazine at single-walled carbon-nanotube-modified edge-plane pyrolytic graphite electrodes electro-decorated with metal and metal oxide films. J Solid State Electrochem 12:1325–1336

    Article  CAS  Google Scholar 

  14. Novoselvo KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in grapheme. Nature 438:197–200

    Article  Google Scholar 

  15. Jannik CM, Geim AK, Katsnelson MI, Ovoselov MI, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  Google Scholar 

  16. Nderade ÂL, Valente MA, Ferreira JMF, Fabris JD (2012) Preparation of size-controlled nanoparticles of magnetite. J Magn Magn Mater 324:1753–1757

    Article  Google Scholar 

  17. Łużny W, Śniechowski M, Laska J (2002) Structural properties of emeraldine base and the role of water contents: X-ray diffraction and computer modelling study. Synth Met 126:27–35

    Article  Google Scholar 

  18. Klug HP, Alexander LE (1970) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  19. Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352

    Article  CAS  Google Scholar 

  20. Tan Q, Xu Y, Yang J, Qiu L, Chen Y, Chen X (2013) Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors. Electrochim Acta 88:526–529

    Article  CAS  Google Scholar 

  21. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2:5–13

    Article  CAS  Google Scholar 

  22. Farrokhzad H, Gerven TV, Bruggen BVD (2013) Preparation and characterization of a conductive polyaniline/polysulfone film and evaluation of the effect of co-solvent. Eur Polym J 49:3234–3243

    Article  CAS  Google Scholar 

  23. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727

    Article  CAS  Google Scholar 

  24. Jacob BP, Kumar A, Pant RP, Singh S, Mohammed EM (2011) Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull Mater Sci 34:1345–1350

    Article  CAS  Google Scholar 

  25. Gui Y, Yuan J, Wang W, Zhao J, Tian J, Xie B (2014) Facile solvothermal synthesis and gas sensitivity of graphene/WO3 nanocomposites. Materials 7(6):4587–4600

    Article  Google Scholar 

  26. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045

    Article  CAS  Google Scholar 

  27. Han D, Xu P, Jing X, Wang J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53

    Article  CAS  Google Scholar 

  28. Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787

    Article  CAS  Google Scholar 

  29. Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680

    Article  CAS  Google Scholar 

  30. Lim YS, Tan YP, Lim HN, Huang NM, Tan WT, Yarmo MA, Yang YC (2014) Potentiostatically deposited polypyrrole/graphene decorated nano-manganese oxide ternary film for supercapacitors. Ceram Inter 40:3855–3864

    Article  CAS  Google Scholar 

  31. Yan D, Li Y, Liu Y, Zhuo R, Geng B, Wu Z, Wang J, Ren P, Yan P (2015) Design and influence of mass ratio on supercapacitive properties of ternary electrode material reduced graphene oxide@MnO2@ poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate). Electochim Acta 169:317–335

    Article  CAS  Google Scholar 

  32. Rajagopalan B, Chung J (2014) Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res Lett 9:535–545

    Article  Google Scholar 

  33. Farsi H, Gobal F, Barzgari Z (2013) A study of hydrated nanostructured tungsten trioxide as an electroactive material for pseudocapacitors. Ionics 19:287–294

    Article  CAS  Google Scholar 

  34. Jiang TQJ, Chen H, Wan H, Miao L, Zhang L (2013) Synergetic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680

    Article  Google Scholar 

  35. Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high- performance supercapacitors. J Power Source 245:937–946

    Article  CAS  Google Scholar 

  36. Yan L, Hongrui P, Guicun L, Kezheng C (2012) Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur Polym J 48:1406–1412

    Article  Google Scholar 

  37. Balasubramaniam M, Balakumar S (2016) Exploration of electro-chemical properties of zinc antimonate nanoparticles as supercapacitor electrode material. Mater Sci Semicond Process 56:287–294

    Article  CAS  Google Scholar 

  38. Daniel V (1967) Dielectric relaxation. Academic Press, London and New York

    Google Scholar 

  39. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:17–50

    Article  Google Scholar 

  40. Zhu J, Chen M, Qu H, Luo Z, Wu S, Colorado HA, Wei S, Guo Z (2013) Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ Sci 6:194–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khairy.

Electronic supplementary material

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousa, M., Khairy, M. & Shehab, M. Nanostructured ferrite/graphene/polyaniline using for supercapacitor to enhance the capacitive behavior. J Solid State Electrochem 21, 995–1005 (2017). https://doi.org/10.1007/s10008-016-3446-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3446-6

Keywords

Navigation