Skip to main content
Log in

The Effect of Freestream Flow Velocities on the Flexible Printed Circuit Board with Different BGA Package Arrangements

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The desire of flexibility, light weight and low cost in current electronic device has increased the application of flexible printed circuit board (FPCB). This paper aims to investigate the effect of different Reynolds number (Re) toward FPCB attached with ball grid array (BGA) package in different arrangements. Actual BGA package with 100 solder joints incorporating FPCB was attached to a fixture in wind tunnel test section to perform FPCB’s deflection analysis with different flow velocities and package’s configurations. Furthermore, numerical simulation was also performed to obtain numerical deflection and stress value. The findings show that the Reynolds numbers have a substantial effect to the FPCB’s deflection and stress. However, the BGA package’s positions on the FPCB were found to be insignificant to the responses. The actual BGA package on FPCB as presented in this paper will represent more realistic values of determined FPCB’s deflection and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FPCB:

Flexible printed circuit board

Re :

Reynolds number

BGA:

Ball grid array

RPCB:

Rigid printed circuit board

CFD:

Computational fluid dynamic

FSI:

Fluid-structure interaction

\({\vec {u}}\) :

Flow velocity

\(\rho \) :

Air density

V :

Air velocity

L :

Characteristic length

\(\mu \) :

Dynamic viscosity

\(\delta \) :

Deflection

References

  1. Xiao, S.Y.; Che, L.F.; Li, X.X.; Wang, Y.L.: A novel fabrication process of MEMS devices on polyimide flexible substrates. Microelectron. Eng. 85(2), 452–457 (2008). doi:10.1016/j.mee.2007.08.004

    Article  Google Scholar 

  2. Leong, W.C.: Investigation on flexible type printed circuit board electronics using fluid-strcuture interaction technique. Ph.D. thesis, Universiti Sains Malaysia (2014)

  3. Petropoulos, A.; Pagonis, D.N.; Kaltsas, G.: Flexible PCB-MEMS flow sensor. Proced. Eng. 47, 236–239 (2012). doi:10.1016/j.proeng.2012.09.127

    Article  Google Scholar 

  4. Que, Rui Yi; Zhu, Rong: A compact flexible thermal flow sensor for detecting two-dimensional flow vector. IEEE Sens. J. 15(3), 1931–1936 (2015). doi:10.1109/JSEN.2014.2367017

    Article  Google Scholar 

  5. Takamiya, M.; Fuketa, H.; Ishida, K.; Yokota, T.; Sekitani, T.; Someya, T.; Sakurai, T.: Flexible, large-area, and distributed organic electronics closely contacted with skin for healthcare applications. In: Circuits and Systems (MWSCAS), 57th International Midwest Symposium, pp. 829–832. IEEE (2014)

  6. Ding, G.; Sandtner, J.; Bleuler, H.: A novel flexible PCB conductive structure for electrodynamic bearings and measurement in its induced voltage. J. Electr. Eng. Technol. 10(5), 2001–2008 (2015)

    Article  Google Scholar 

  7. Wang, R.; Prabhakaran, S.; Burdick, W.; Nicholas, R.: Rogowski current sensor design and analysis based on printed circuit boards (PCB). In: Energy Conversion Congress and Exposition (ECCE), pp. 3206–3211. IEEE (2014)

  8. Dehez, B.; Baudart, F.; Perriard, Y.: Analysis of a new topology of flexible PCB winding for slotless BLDC machines. In: IEEE Electrical Machines (ICEM) International Conference, pp. 1963–1969 (2014)

  9. Yang, Q.J.; Shi, X.Q.; Wang, Z.P.; Shi, Z.F.: Finite-element analysis of a PBGA assembly under isothermal/mechanical twisting loading. Finite Elem. Anal. Des. 39(9), 819–833 (2003). doi:10.1016/S0168-874X(02)00134-8

    Article  Google Scholar 

  10. Lau, D.; Chan, Y.S.; Lee, S.W.R.; Lifeng, F.; Yuming, Y.; Sang, L.: Experimental testing and failure prediction of PBGA package assemblies under 3-point bending condition through computational stress analysis. In: 7th International Conference on Electronic Packaging Technology (ICEPT) 26–29, pp. 1–7 (2006)

  11. Lohan, J.; Eveloy, V.; Rodgers, P.: Visualization of forced air flows over a populated printed circuit board and their impact on convective heat transfer. In: 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), pp. 501–511 (2002)

  12. Rodgers, P.J.; Eveloy, V.C.; Davies, M.R.: An experimental assessment of numerical predictive accuracy for electronic component heat transfer in forced convection–Part I: Experimental methods and numerical modeling. J. Electr. Packag. 125(1), 67–75 (2003). doi:10.1115/1.1533059

    Article  Google Scholar 

  13. Rodgers, P.J.; Eveloy, V.C.; Davies, M.R.: An experimental assessment of numerical predictive accuracy for electronic component heat transfer in forced convection–Part II: Results and discussion. J. Electr. Packag. 125(1), 76–83 (2003). doi:10.1115/1.1533060

    Article  Google Scholar 

  14. Pitarresi, J.; Geng, P.; Beltman, W.; Yun, L.: Dynamic modeling and measurement of personal computer motherboards. In: 52nd Electronic Components and Technology Conference, pp. 597–603 (2002)

  15. Pitarresi, J.; Roggeman, B.; Chaparala, S.; Geng, P.: Mechanical shock testing and modeling of PC motherboards. In: 54th Electronic Components and Technology Conference 1–4, pp. 1047–1054 (2004)

  16. Pingan, D.; Yating, Y.; Ezhong, G.; Bo, Li.: Finite element modeling for computer motherboard modal analysis. In: IEEE International Conference on Mechatronics and Automation 29 July-1, pp. 2101–2105 (2005)

  17. Yating, Y.; Pingan, D.; Ezhong, G.: Structural robustness study of a computer motherboard. In: IEEE International Conference on Industrial Technology (ICIT) 15–17, pp. 2370–2374 (2006)

  18. Grimes, R.; Davies, M.; Punch, J.; Dalton, T.; Cole, R.: Modeling electronic cooling axial fan flows. J. Electr. Packag. 123(2), 112–119 (2001)

    Article  Google Scholar 

  19. Grimes, R.; Davies, M.: The effect of fan operating point and location on temperature distribution in electronic systems. In: 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), pp. 677–684 (2002)

  20. Grimes, R.; Davies, M.: Air flow and heat transfer in fan cooled electronic systems. J. Electr. Packag. 126(1), 124–134 (2004). doi:10.1115/1.1649241

    Article  Google Scholar 

  21. Grimes, R.; Davies, M.: Optical measurement of electronic system air flow and temperature distribution. J. Opt. A Pure Appl. Opt. 6(6), 617 (2004)

    Article  Google Scholar 

  22. Arruda, L.; Freitas, G.: Effect of surrounding air on board level drop tests of flexible printed circuit boards. In: International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, 16–18, pp. 1–4 (2007)

  23. Leong, W.C.; Abdullah, M.Z.; Mujeebu, M.A.: Flow induced deflection and stress on flexible printed circuit board in fan-cooled electronic systems: FSI approach. IEEE Trans. Compon. Packag. Manuf. Technol. 2(4), 617–624 (2012). doi:10.1109/TCPMT.2011.2174822

  24. Leong, W.C.; Abdullah, M.Z.; Khor, C.Y.; Ong, E.E.S.: Study on the fluid-structure interaction of flexible printed circuit board electronics in the flow environment. IEEE Trans. Compon. Packag. Manuf. Technol. 2(8), 1335–1345 (2012). doi:10.1109/TCPMT.2012.2201939

    Article  Google Scholar 

  25. Leong, W.C.; Abdullah, M.Z.; Khor, C.Y.; Tan, H.J.T.: FSI study of the effect of air inlet/outlet arrangements on the reliability and cooling performances of flexible printed circuit board electronics. J. Therm. Sci. Technol. 33(1), 43–53 (2013)

    Google Scholar 

  26. Leong, W.C.; Abdullah, M.Z.; Khor, C.Y.: Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology. Microelectr. Reliab. 53(12), 1996–2004 (2013). doi:10.1016/j.microrel.2013.06.008

    Article  Google Scholar 

  27. Leong, W.C.; Abdullah, M.Z.; Khor, C.Y.: Application of flexible printed circuit board (FPCB) in personal computer motherboards: focusing on mechanical performance. Microelectr. Reliab. 52(4), 744–756 (2012). doi:10.1016/j.microrel.2011.11.003

    Article  Google Scholar 

  28. Chaiat Leong, W.; Zulkifly Abdullah, M.; Yee Khor, C.; Ramdan, D.: Study on the fluid-structure interaction of flexible printed circuit board motherboard in personal computer casings. Microelectr. Int. 30(3), 138–150 (2013). doi:10.1108/MI-10-2012-0071

    Article  Google Scholar 

  29. European Committee for Standardization: plastics—determination of tensile properties—Part 3 : test conditions for films and sheets. In (2004)

  30. Engineering Laboratory Design: 12inch low speed, recirculating wind tunnel. http://www.eldinc.com/pages/Model02 (2011). Accessed 28 April 2016

  31. Munson, B.R.; Young, D.F.; Okiishi, T.H.: Fundamentals of Fluid Mechanics, 5th edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  32. Cole, R.; Davies, M.; Punch, J.: A board level study of an array of ball grid components–aerodynamic and thermal measurements. J. Electr. Packag. 125(4), 480–489 (2003)

    Article  Google Scholar 

  33. Liu, Z.: Reliability evaluation of FPC under bending stress. In: International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), 12-14 , pp. 2955–2958 (2011)

  34. Liang, S.; Mingxiang, W.; YongHong, H.; Fai, L.T.; Qi, J.Y.: Reflow profile simulation by finite element method for a BGA package. In: 6th International Conference on Electronic Packaging Technology, 30 Aug.-2, pp. 419–422 (2005)

  35. Lau, C.S.: Thermal Coupling Method for Reflow Soldering Process. Universiti Sains Malaysia, Gelugor (2013)

    Google Scholar 

  36. Altera Corporation.: Altera device package information 04R-00223-2.0. http://wl.altera.com/devicepackaging/04R00223-02.pdf (2011). Accessed 9 Sept 2015

  37. Tian, D.W.; Wang, C.Q.; Tian, Y.H.: Effect of solidification on solder bump formation in solder jet process: simulation and experiment. Trans. Nonferrous Metals Soc. China 18(5), 1201–1208 (2008). doi:10.1016/S1003-6326(08)60205-8

  38. Li, M.Y.; Chang, H.; Pang, X.C.; Wang, L.; Fu, Yong Gao: Abnormal accumulation of intermetallic compound at cathode in a SnAg 3.0 Cu 0.5 lap joint during electromigration. J. Phys. D Appl. Phys. 44(11), 115501 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, C.H., Abdullah, M.Z., Azid, I.A. et al. The Effect of Freestream Flow Velocities on the Flexible Printed Circuit Board with Different BGA Package Arrangements. Arab J Sci Eng 42, 2075–2086 (2017). https://doi.org/10.1007/s13369-017-2491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2491-5

Keywords

Navigation