Skip to main content
Log in

Bioconversion of Mushroom Cultivation Waste Materials into Cellulolytic Enzymes and Bioethanol

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mushroom cultivation waste material (MCWM) was utilized as a lignocellulosic source for cellulolytic enzyme production by Aspergillus tubingensis HS1-5 and bioethanol production. The appreciable level of cellulolytic enzymes was produced under a moisture content of 65%, pH 5.0, and \(30\, {^{\circ }}\hbox {C}\). Pretreatment of MCWM with 1% \(\hbox {H}_{2}\hbox {SO}_{4}\) at \(121\,{^{\circ }}\hbox {C}\) for 90 min was effective, resulting in high fermentable sugar yields. Enzymatic hydrolysis was performed using the substrate-to-enzyme volume ratios of 1:0.5, 1:1, and 1:2, and glucose concentration was maximal with the substrate-to-enzyme volume ratio of 1:0.5 at 24 h. The scanning electron microscope images indicated that acid pretreatment and enzymatic hydrolysis exerted the disintegration of MCWM structure and the release of fermentable sugars. The ethanol yield produced from MCWM by Saccharomyces cerevisiae TISTR 5339 was 0.42 g ethanol/g sugar, corresponding to 82.30% of the theoretical yield. These findings suggest that MCWM is an appropriate lignocellulosic source for cellulolytic enzyme production and can be effectively used for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U.N.: World population to 2300. New York: United Nations, Department of Economic and Social Affairs (2004)

  2. E.I.A.: International Energy Statistics Database (as of July 2013). www.qeia.gov/ies (2015)

  3. IEA: World Energy Outlook (2013)

  4. Capellán-Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L.J.: Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77, 641–666 (2014). doi:10.1016/j.energy.2014.09.063

    Article  Google Scholar 

  5. Song, J.; Song, S.J.; Oh, S.-D.; Yoo, Y.: Evaluation of potential fossil fuel conservation by the renewable heat obligation in Korea. Renew. Energy 79(0), 140–149 (2015). doi:10.1016/j.renene.2014.10.014

    Article  Google Scholar 

  6. Ramli, M.A.M.; Twaha, S.: Analysis of renewable energy feed-in tariffs in selected regions of the globe: lessons for Saudi Arabia. Renew. Sustain. Energy Rev. 45, 649–661 (2015). doi:10.1016/j.rser.2015.02.035

    Article  Google Scholar 

  7. Wang, M.; Pan, X.; Xia, X.; Xi, B.; Wang, L.: Environmental sustainability of bioethanol produced from sweet sorghum stem on saline–alkali land. Bioresour. Technol. 187, 113–119 (2015). doi:10.1016/j.biortech.2015.03.103

    Article  Google Scholar 

  8. Fernandes, M.C.; Ferro, M.D.; Paulino, A.F.C.; Mendes, J.A.S.; Gravitis, J.; Evtuguin, D.V.; Xavier, A.M.R.B.: Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour. Technol. 186, 309–315 (2015). doi:10.1016/j.biortech.2015.03.037

    Article  Google Scholar 

  9. Camesasca, L.; Ramírez, M.B.; Guigou, M.; Ferrari, M.D.; Lareo, C.: Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 74, 193–201 (2015). doi:10.1016/j.biombioe.2015.01.017

    Article  Google Scholar 

  10. van der Pol, E.; Bakker, R.; van Zeeland, A.; Sanchez Garcia, D.; Punt, A.; Eggink, G.: Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresour. Technol. 181, 114–123 (2015). doi:10.1016/j.biortech.2015.01.033

    Article  Google Scholar 

  11. Wang, M.; Chen, Y.; Xia, X.; Li, J.; Liu, J.: Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresour. Technol. 163, 74–81 (2014). doi:10.1016/j.biortech.2014.04.014

    Article  Google Scholar 

  12. Khawla, B.J.; Sameh, M.; Imen, G.; Donyes, F.; Dhouha, G.; Raoudha, E.G.; Oumèma, N.-E.: Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind. Crop. Prod. 52, 144–149 (2014). doi:10.1016/j.indcrop.2013.10.025

    Article  Google Scholar 

  13. Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T.: Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35(2), 901–909 (2011). doi:10.1016/j.biombioe.2010.11.004

    Article  Google Scholar 

  14. Ramadoss, G.; Muthukumar, K.: Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production. Chem. Eng. J. 260, 178–187 (2015). doi:10.1016/j.cej.2014.08.006

    Article  Google Scholar 

  15. Papa, G.; Rodriguez, S.; George, A.; Schievano, A.; Orzi, V.; Sale, K.L.; Singh, S.; Adani, F.; Simmons, B.A.: Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour. Technol. 183, 101–110 (2015). doi:10.1016/j.biortech.2015.01.121

    Article  Google Scholar 

  16. Patni, N.; Pillai, S.G.; Dwivedi, A.H.: Wheat as a promising substitute of corn for bioethanol production. Proc. Eng. 51, 355–362 (2013). doi:10.1016/j.proeng.2013.01.049

    Article  Google Scholar 

  17. Extension, D.o.A.: http://www.doae.go.th/ (2001)

  18. Tippayawong, N.; Chaichana, C.; Promwungkwa, A.; Rerkkriangkrai, P.: Clean energy from gasification of biomass for sterilization of mushroom growing substrates. Int. J. Energy 4(5), 96–103 (2011)

    Google Scholar 

  19. Moradi, F.; Amiri, H.; Soleimanian-Zad, S.; Ehsani, M.R.; Karimi, K.: Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112, 8–13 (2013). doi:10.1016/j.fuel.2013.05.011

    Article  Google Scholar 

  20. Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y.: Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96(18), 1959–1966 (2005). doi:10.1016/j.biortech.2005.01.010

    Article  Google Scholar 

  21. Thomsen, M.; Thygesen, A.; Jørgensen, H.; Larsen, J.; Christensen, B.; Thomsen, A.: Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl. Biochem. Biotechnol. 130(1–3), 448–460 (2006). doi:10.1385/ABAB:130:1:448

    Google Scholar 

  22. Kamei, I.; Nitta, T.; Nagano, Y.; Yamaguchi, M.; Yamasaki, Y.; Meguro, S.: Evaluation of spent mushroom waste from Lentinula edodes cultivation for consolidated bioprocessing fermentation by Phlebia sp. MG-60. Int. Biodeterior. Biodegrad. 94, 57–62 (2014). doi:10.1016/j.ibiod.2014.07.001

    Article  Google Scholar 

  23. Hiyama, R.; Gisusi, S.; Harada, A.: Evaluation of waste mushroom medium from cultivation of shiitake mushroom ( Lentinula edodes) as feedstock of enzymic saccharification. J. Wood Sci. 57, 429–435 (2011). doi:10.1007/s10086-011-1185-y

    Article  Google Scholar 

  24. Grujić, M.; Dojnov, B.; Potočnik, I.; Duduk, B.; Vujčić, Z.: Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int. Biodeterior. Biodegrad. 104, 290–298 (2015). doi:10.1016/j.ibiod.2015.04.029

    Article  Google Scholar 

  25. Lima, C.S.S.; Conceição, M.M.; Silva, F.L.H.; Lima, E.E.; Conrado, L.S.; Leão, D.A.S.: Characterization of acid hydrolysis of sisal. Appl. Energy 102, 254–259 (2013). doi:10.1016/j.apenergy.2012.09.061

    Article  Google Scholar 

  26. Yurayard, K.; Mahakhan, P.; Vichitphan, K.; Vichitphan, S.; Khamprasert, D.; Swangkeaw, J.: Carboxymethyl cellulase production by Penicillium oxalicum HS1-3 isolated from soil in Chaiyaphum province. KKU Sci. J. 40(1), 75–82 (2012)

    Google Scholar 

  27. Mandels, M.; Hontz, L.; Nystrom, W.: Enzymatic hydrolysis of waste cellulose. Biotechnol. Bioeng. 16, 1471–1493 (1974)

    Article  Google Scholar 

  28. Lotong, N.; Suwanarit, P.: Production of soy sauce koji mold spore inoculum in plastic bags. Appl. Environ. Microbiol. 46, 1224–1226 (1983)

    Google Scholar 

  29. Dogaris, I.; Vakontios, G.; Kalogeris, E.; Mamma, D.; Kekos, D.: Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind. Crop. Prod. 29(2–3), 404–411 (2009). doi:10.1016/j.indcrop.2008.07.008

    Article  Google Scholar 

  30. Ekperigin, M.M.: Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6(1), 28–33 (2007)

    Google Scholar 

  31. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  32. Rodriguez, M.E.; Lopes, C.A.; van Broock, M.; Valles, S.; Ramon, D.; Caballero, A.C.: Screening and typing of Patagonian wine yeast for glycosidase activities. J. Appl. Microbiol. 96, 84–95 (2004)

    Article  Google Scholar 

  33. Soontornchaiboon, W.; Chunhachart, O.; Pawongrat, R.: Ethanol production from yam bean using yeast Saccharomyces cerevisiae TISTR 5339. In: Proceedings of Future Challenges Towards ASEAN: 29-30 November and 1 December 2012, 1st Mae Fah Luang University International Conference 2012, Chiang Rai: Mae Fah Luang University, pp. 1–8 (2012)

  34. Subhedar, P.B.; Gogate, P.R.: Ultrasound-assisted bioethanol production from waste newspaper. Ultrason. Sonochem. 27, 37–45 (2015). doi:10.1016/j.ultsonch.2015.04.035

    Article  Google Scholar 

  35. Do, T.X.; Lim, Y.-I.; Jang, S.; Chung, H.-J.: Hierarchical economic potential approach for techno-economic evaluation of bioethanol production from palm empty fruit bunches. Bioresour. Technol. 189, 224–235 (2015). doi:10.1016/j.biortech.2015.04.020

    Article  Google Scholar 

  36. Cha, Y.-L.; An, G.H.; Yang, J.; Moon, Y.-H.; Yu, G.-D.; Ahn, J.-W.: Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renew. Energy 80(259–265), 2015 (2015). doi:10.1016/j.renene.2015.02.016

    Google Scholar 

  37. Favaro, L.; Basaglia, M.; van Zyl, W.H.; Casella, S.: Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl. Energy 102, 170–178 (2013). doi:10.1016/j.apenergy.2012.05.059

    Article  Google Scholar 

  38. Yan, J.; Wei, Z.; Wang, Q.; He, M.; Li, S.; Irbis, C.: Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour. Technol. 193, 103–109 (2015). doi:10.1016/j.biortech.2015.06.069

    Article  Google Scholar 

  39. Bansal, N.; Tewari, R.; Soni, R.; Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 32(7), 1341–1346 (2012). doi:10.1016/j.wasman.2012.03.006

    Article  Google Scholar 

  40. Ja’afaru, M.I.; Fagade, O.E.: Optimization studies on cellulase enzyme production by an isolated strain of Aspergillus niger YL128. Afr. J. Microbiol. Res. 4, 2635–2639 (2010)

    Google Scholar 

  41. Haq, I.; Javed, M.M.; Khan, T.S.: An innovative approach for hyper production of cellulolytic and hemicellulolytic enzymes by consortium of Aspergillus niger MSK-7 and Trichoderma viride MSK-10. Afr. J. Biotechnol. 5, 609–614 (2006)

    Google Scholar 

  42. Xin, F.; Geng, A.: Horticultural west as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl. Biochem. Biotechnol. 162, 295–306 (2010)

    Article  Google Scholar 

  43. Saha, B.C.; Iten, L.B.; Cotta, M.A.; Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40(12), 3693–3700 (2005). doi:10.1016/j.procbio.2005.04.006

    Article  Google Scholar 

  44. Cui, M.; Yuan, Z.; Zhi, X.; Wei, L.; Shen, J.: Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int. J. Hydrog. Energy 35(9), 4041–4047 (2010). doi:10.1016/j.ijhydene.2010.02.035

    Article  Google Scholar 

  45. Cui, M.; Shen, J.: Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int. J. Hydrog. Energy 37(1), 1120–1124 (2012). doi:10.1016/j.ijhydene.2011.02.078

    Article  Google Scholar 

  46. Badal, C.S.; Loren, B.I.; Michael, A.C.; Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process. Biochem. 40, 3693–3700 (2005)

    Article  Google Scholar 

  47. Karimi, K.; Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018 (2016)

    Article  Google Scholar 

  48. Yücel, H.G.; Aksu, Z.: Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158, 793–799 (2015)

    Article  Google Scholar 

  49. Hansen, M.A.T.; Jørgensen, H.; Laursen, K.H.; Schjoerring, J.K.; Felby, C.: Structural and chemical analysis of process residue from biochemical conversion of wheat straw to ethanol (Triticum aestivum L.). Biomass Bioenergy 56, 572–581 (2013)

    Article  Google Scholar 

  50. Abraham, R.E.; Barrow, C.J.; Puri, M.: Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa). Biomass Bioenergy 58, 180–187 (2013)

    Article  Google Scholar 

  51. Qiu, Z.; Aita, G.M.; Walker, M.S.: Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256 (2012)

    Article  Google Scholar 

  52. Chandel, A.K.; Singh, O.V.; Narasu, M.L.; Rao, L.V.: Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS3. N. Biotechnol. 28(6), 593–599 (2011). doi:10.1016/j.nbt.2010.12.002

    Article  Google Scholar 

  53. Ge, L.; Wang, P.; Mou, H.: Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew. Energy 36(1), 84–89 (2011). doi:10.1016/j.renene.2010.06.001

  54. Meinita, M.D.N.; Marhaeni, B.; Winanto, T.; Setyaningsih, D.; Hong, Y.-K.: Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J. Ind. Eng. Chem. 27, 108–114 (2015). doi:10.1016/j.jiec.2014.12.024

  55. Maeda, R.N.; Barcelos, C.A.; Anna, L.M.M.S.; Pereira Jr., N.: Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J. Biotechnol. 163(1), 38–44 (2013). doi:10.1016/j.jbiotec.2012.10.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutaporn Sawaengkaew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotthisawad, K., Mahakhan, P., Vichitphan, K. et al. Bioconversion of Mushroom Cultivation Waste Materials into Cellulolytic Enzymes and Bioethanol. Arab J Sci Eng 42, 2261–2271 (2017). https://doi.org/10.1007/s13369-017-2496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2496-0

Keywords

Navigation