Skip to main content
Log in

Number theory meets high energy physics

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Feynman amplitudes in perturbative quantum field theory are being expressed in terms of an algebra of functions, extending the familiar logarithms, and associated numbers—periods. The study of these functions (including hyperlogarithms) and numbers (like the multiple zeta values), that dates back to Leibniz and Euler, has attracted anew the interest of algebraic geometers and number theorists during the last decades. The two originally independent developments are recently coming together in an unlikely collaboration between particle physics and what were regarded as the most abstruse branches of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Adams, C. Bogner, and S. Weinzierl, “A walk on the sunset boulevard,” arXiv:1601.03646 [hep-ph].

  2. S. Bloch, M. Kerr, and P. Vanhove, “Local mirror symmetry and the sunset Feynman integral,” arXiv:1601.08181.

  3. C. Bogner and S. Weinzierl, “Periods and Feynman integrals,” J. Math. Phys. 50, 042302 (2009); arXiv:0711.4863v2 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. J. Broadhurst and D. Kreimer, “Knots and numbers in ?4 to 7 loops and beyond,” Int. J. Mod. Phys. C 6, 519–524 (1995); “Association of multiple zeta values with positive knots via feynman diagrams up to 9 loops,” Phys. Lett. B 393, 403–412 (1997); arXiv:hep-th/9609128.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. F. Brown, “Single-valued hyperlogarithms and unipotent differential equations,” IHES Notes (2004), available online.

    Google Scholar 

  6. F. Brown, “Iterated integrals in quantum field theory,” in Geometric and Topological Methods for Quantum Field Theory, Proceedings of the 2009 Summer School (Cambridge Univ. Press, Cambridge, 2013), pp. 188–240.

    Google Scholar 

  7. F. Brown, “On the decomposition of motivic multiple zeta values,” in Galois-Teichmüller Theory Arithmetic Geometry, Ed. by H. Nakamura, F. Pop, L. Schneps, A. Tamogawa, Adv. Studies Pure Math. 63, 31–58 (2012); arXiv:1102.1310v2[math.NT].

    Google Scholar 

  8. F. Brown, “Mixed tate motives over Z,” Ann. Math. 175, 949–976 (2012); arXiv:1102.1312[math.AG].

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brown, “Feynman integrals and cosmic galois group,” arXiv:1512.06409v2[math-ph]; “Notes on motivic periods,” arXiv:1512.06410[math.NT]; “Periods and Feynman amplitudes,” arXiv:1512.09265[math.ph].

  10. S. Carr, H. Gangle, and L. Schneps, “On the Broadhurst-Kreimer generating series for multiple zeta values,” in Proceedings of the Madrid-ICMAT Conference on Multizetas, 2015.

    Google Scholar 

  11. K. T. Chen, “Iterated path integrals,” Bull. Am. Math. Soc. 83, 831–879 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Deligne, “Multizetas d’aprés Francis Brown,” Séminaire Bourbaki 64, No. 1048 (2012).

    MATH  Google Scholar 

  13. C. Duhr, “Mathematical aspects of scattering amplitudes,” arXiv:1411.7538 [hep-ph].

  14. G. Galilei, “First day,” in Dialogue Concerning the Two Chief World Systems (1632).

    Google Scholar 

  15. J. K. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, “Motivic amplitudes and cluster coordinates,” arXiv:1305.1617 [hep-th].

  16. A. Goncharov, “Galois symmetry of fundamental groupoids and noncommutative geometry,” Duke Math. J. 128, 209–284 (2005); arXiv:math/0208144v4.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Hayes, “g-ology,” Am. Sci. 92, 212–216 (2004).

    Article  Google Scholar 

  18. T. Kinoshita, “Tenth-order QED contribution to the electron and high precision test of quantum electrodynamics,” in Proceedings of the Conference in Honor of the 90th Birthday of Freeman Dyson (World Scientific, Singapore, 2014), pp. 148–172.

    Chapter  Google Scholar 

  19. M. Kontsevich and D. Zagier, “Periods,” in Mathematics–20101 and Beyond, Ed. by B. Engquist and W. Schmid (Springer, Berlin, 2001), pp. 771–808.

    Google Scholar 

  20. S. Laporta and E. Remiddi, “The analytical value of the electron g-2 at order a3 in QED,” Phys. Lett. B 379, 283–291 (1996); arXiv:hep-ph/9602417.

    Article  ADS  Google Scholar 

  21. B. E. Lautrup, A. Peterman, and E. de Rafael, “Recent developments in the comparison between theory and experiment in quantum electrodynamics,” Phys. Rep. 3, 193–260 (1972).

    Article  ADS  Google Scholar 

  22. N. M. Nikolov, R. Stora, and I. Todorov, “Renormalization of massless Feynman amplitudes as an extension problem for associate homogeneous distributions,” Rev. Math. Phys. 26, 1430002 (2014); CERN-TH-PH/2013-107; arXiv:1307.6854 [hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Panzer and O. Schnetz, “The galois coaction on ?4 periods,” arXiv:1604.04289 [hep-th].

  24. L. Schneps, Survey of the Theory of Multiple Zeta Values (Heilbronn, Bristol, 2011).

    Google Scholar 

  25. O. Schnetz, “Quantum periods: a census of f4-transcendentals,” J. Number Theory Phys. 4, 1–48 (2010); arXiv:0801.2856v2[hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Schnetz, “Graphical functions and single-valued multiple polylogarithms,” Commun. Number Theory Phys. 8, 589–685 (2014); arXiv:1302.6445v2[math.NT].

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Todorov, “Polylogarithms and multizeta values in massless Feynman amplitudes,” in Lie Theory and Its Applications in Physics LT10, Ed. by V. Dobrev, Vol. 111 of Springer Proceedings in Mathematics and Statistics (Springer, Tokyo, 2014), pp. 155–176; IHES/P/14/10 (Bures-sur-Yvette, 2014).

    Google Scholar 

  28. I. Todorov, “Perturbative quantum field theory meets number theory 2014,” in ICMAT Research Trimester. Multiple Zeta Values, Multiple Polylogarithms and Quantum Field Theory, Springer Proceedings in Mathematics and Statistics (Springer, 2017); IHES/P/16/02.

    Google Scholar 

  29. I. Todorov, “Hyperlogarithms and periods in Feynman amplitudes,” Report on the International Conference on Lie Theory and Its Applications in Physics LT’11, Varna, Bulgaria, 2015; CERN-TH-2016-042.

    Google Scholar 

  30. M. Waldschmidt, Lectures on Multiple Zeta Values (Inst. Math. Sci., Chennai, India, 2011).

    Google Scholar 

  31. A. Weil, “Prehistory of the zeta-function,” in Number Theory, Trace Formula and Discrete Groups (Academic Press, New York, 1989), pp. 1–9; Number Theory—An Approach through History from Hammurapi to Legendre (Birkhäuser, Basel, 1983,2007).

    Google Scholar 

  32. Don Zagier, Introduction to Modular Forms, in From Number Theory to Physics, Proceedings of the Les Houches Meeting, March 1989, Ed. by M. Waldschmidt (Springer, Berlin, 1992), pp. 238–291.

    Google Scholar 

  33. Don Zagier, “The dilogarithm function,” in Frontiers in Number Theory, Physics and Geometry II, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove (Springer, Berlin, 2006), pp. 3–65.

    Google Scholar 

  34. J. Zhao, “Multiple polylogarithms,” in Proceeding of the Workshop Polylogarithms as a Bridge between Number Theory and Particle Physics, Durham, July 3–13, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Todorov.

Additional information

Invited talk at the International Workshop “Supersymmetries and Quantum Symmetries” (SQS’2015), 3–8 August, 2015

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, I. Number theory meets high energy physics. Phys. Part. Nuclei Lett. 14, 291–297 (2017). https://doi.org/10.1134/S1547477117020339

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020339

Navigation