Skip to main content

Advertisement

Log in

Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1–2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH4 +, SiO4 3−) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100:179–196. doi:10.1016/S0269-7491(99)00091-3

    Article  CAS  PubMed  Google Scholar 

  2. Fouilland E, Trottet A, Bancon-Montigny C, et al (2012) Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France). Estuar. Coast. Shelf Sci. 113:192–204

    Article  CAS  Google Scholar 

  3. Pecqueur D, Vidussi F, Fouilland E, et al (2011) Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673:13–27. doi:10.1007/s10750-011-0745-x

    Article  CAS  Google Scholar 

  4. Guadayol Ò, Peters F, Marrasé C, et al (2009) Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Mar. Ecol. Prog. Ser. 381:139–155. doi:10.3354/meps07939

    Article  CAS  Google Scholar 

  5. Guizien K, Charles F, Lantoine F, Naudin J-J (2007) Nearshore dynamics of nutrients and chlorophyll during Mediterranean-type flash-floods. Aquat. Living Resour. 20:3–14. doi:10.1051/alr:2007011

    Article  CAS  Google Scholar 

  6. Chu Y, Salles C, Tournoud M-G, et al (2011) Faecal bacterial loads during flood events in Northwestern Mediterranean coastal rivers. J. Hydrol. 405:501–511. doi:10.1016/j.jhydrol.2011.05.047

    Article  Google Scholar 

  7. López-Flores R, Garcés E, Boix D, et al (2006) Comparative composition and dynamics of harmful dinoflagellates in Mediterranean salt marshes and nearby external marine waters. Harmful Algae 5:637–648. doi:10.1016/j.hal.2006.01.001

    Article  Google Scholar 

  8. Brown JM, Felice NR, Scalfone NB, Hewson I (2012) Influence of habitat confluence on aquatic microbial assemblages in experimental mesocosms. Aquat. Microb. Ecol. 66:33–40

    Article  Google Scholar 

  9. Naudin J-J, Cauwet G, Fajon C, et al (2001) Effect of mixing on microbial communities in the Rhone River plume. J. Mar. Syst. 28:203–227. doi:10.1016/S0924-7963(01)00004-5

    Article  Google Scholar 

  10. Pujo-Pay M, Conan P, Joux F, et al (2006) Impact of phytoplankton and bacterial production on nutrient and DOM uptake in the Rhône River plume (NW Mediterranean). Mar. Ecol. Prog. Ser. 315:43–54. doi:10.3354/meps315043

    Article  CAS  Google Scholar 

  11. Remane A (1934) Die Brackwasserfauna. Zool. Anz. 7:34–74

    Google Scholar 

  12. Attrill M, Rundle S (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuar. Coast. Shelf Sci. 55:929–936. doi:10.1006/ecss.2002.1036

    Article  Google Scholar 

  13. Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26:249–293. doi:10.1016/S0065-2881(08)60202-3

    Article  Google Scholar 

  14. Koroleff F (1983) Determination of ammonia. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis, 2nd ef. Verlag Chemie, Weinheim, p 150–157

  15. Tréguer P, Le Corre P (1975) Handbook of seawater nutrient analyses. Autoanalyser II Technicon user guide, 2nd edn. Univ. Bretagne Occidentale, Laboratoire de Chimie Marine, Brest, France

    Google Scholar 

  16. Raimbault P, Pouvesle W, Diaz F, et al (1999) Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar. Chem. 66:161–169. doi:10.1016/S0304-4203(99)00038-9

    Article  CAS  Google Scholar 

  17. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Progr Ser 195:29–45

    Article  CAS  Google Scholar 

  18. Vidussi F, Marty JC, Chiaverini J (2000) Phytoplankton pigments during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea. Deep Sea Res 47:423–445

    Article  Google Scholar 

  19. DuRand MD, Olson RJ (1996) Contributions of phytoplankton light scattering and cell concentration change diel variation in beam attenuation in equatorial Pacific from flow cytometry measurements of pico-, ultra and nanoplankton. Deep Sea Res 43:891–906

    Article  Google Scholar 

  20. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microb 53:1298–1303

    CAS  Google Scholar 

  21. Utermöhl H (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  22. Lund JWG, Kipling C, Lecren ED (1958) The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  23. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher D, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403–424

    Article  Google Scholar 

  24. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331–1346

    Article  Google Scholar 

  25. Mullin MM, Sloan PR, Eppley RW (1966) Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11:307–311

    Article  Google Scholar 

  26. Booth CB (1993) Estimating cell concentration and biomass of autotrophic plankton using microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds). Handbook of methods in aquatic microbial ecology. Lewis. pp 199–205

  27. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceangr 34:1097–1103

    Article  Google Scholar 

  28. Rose M (1933) Copepodes pelagiques, Faune de France 26. Paul Lechevalier, Paris

    Google Scholar 

  29. Alcaraz M, Saiz E, Calbet A, Trepat I, Broglio E (2003) Estimating zooplankton biomass through image analysis. Mar. Biol. 143:307–315

    Article  Google Scholar 

  30. Bouvy M, Bettarel Y, Bouvier C, Domaizon I, Jacquet S, Le Floc’h E, Montanié H, Mostajir B, Sime-Ngando T, Torréton J-P, Vidussi F, Bouvier T (2011) Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environ. Microbiol. 13:1842–1857

    Article  CAS  PubMed  Google Scholar 

  31. Bell RT (1990) An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of (3H)-thymidine. Limnol. Oceanogr. 35:910–915

    Article  CAS  Google Scholar 

  32. Whittaker RH (1952) A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr. 22:1–44

    Article  Google Scholar 

  33. Von Ende CN (1993) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall. pp 113–137

  34. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  35. Lionard M, Muylaert K, Van Gansbeke D, Vyverman W (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540:105–115

    Article  Google Scholar 

  36. Flaming IA, Kromkamp J (1994) Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. J. Plankton Res. 16:1781–1791

    Article  Google Scholar 

  37. Liess A, Rowe O, Francoeur SN, Guo J, Lange K, Shröder A, Reichstein B, Lefèbure R, Deininger A, Mathisen P, Faithfull CL (2016) Terrestrial runoff boots phytoplankton in a Mediterranean coastal lagoon, but these effects do not propagate to higher trophic level. Hydrobiologia. doi:10.1007/s10750-015-2461-4

    Google Scholar 

  38. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  Google Scholar 

  39. Fouilland E, Tolosa T, Bonnet D, Bouvier C, Bouvier T, Bouvy M, Got P, Le Floc’h E, Mostajir B, Roques C, Sempéré R, Sime-Ngando T, Vidussi F (2014) Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiol. Ecol. 87:757–769

    Article  CAS  PubMed  Google Scholar 

  40. Trottet A, Leboulanger C, Vidussi F, Pete R, Bouvy M, Fouilland E (2015) Heterotrophic bacteria show weak competition for nitrogen in coastal waters (Thau Lagon) in autumn. Microb. Ecol. doi:10.1007/s00248-015-0658-8

    PubMed  Google Scholar 

  41. López-Flores R, Boix D, Badosa A, Brucet S, Quintana XD (2009) Environmental factors affecting bacterioplankton and phytoplankton dynamics in confined Mediterranean salt marshes (NE Spain). J. Exp. Mar. Biol. Ecol. 369:118–126

    Article  Google Scholar 

  42. Bonnet D, Carlotti F (2001) Development and egg production in Centropages typicus (Copepoda: Calanoida) fed different food types: a laboratory study. Mar. Ecol. Prog. Ser. 224:133–148

    Article  Google Scholar 

  43. Hessen DO, Nilssen JP (1983) High pH and the abundances of two commonly co-occurring freshwater copepods (Copepoda, Cyclopoida). Inter J Limnol 19:195–201

    Article  Google Scholar 

  44. Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar. Biol. 145:733–738

    Google Scholar 

  45. Brucet S, Compte J, Boix D, et al (2008) Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar. Ecol. Prog. Ser. 355:183–191

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of the RESTHAU project (2007-2010) “Impact of river loadings on microbial communities from Thau Lagoon” funded by the French national EC2CO program and coordinated by E. Fouilland. A. Trottet received a postdoctoral fellowship from University of Montpellier 2. D. Pecqueur received a national PhD fellowship provided by the French Ministry of Education and Research. We should like to thank Louise Oriol (UMR 7621 LOMIC, Banyuls/Mer) and Thibault Dinet for the nutrient analyses and P. Raimbault (UMR Institut Méditerranéen d’Océanologie, Marseille) for the stable isotope analyses. This project used the facilities of the Mediterranean Center of Marine Ecosystem Experimental Research MEDIMEER funded by UMR 5119 ECOSYM “Ecologie des Systèmes Marins Côtiers,” CNRS Institute of Ecology and Environment (InEE), University of Montpellier 2, IFR 129 Armand Sabatier, CNRS-GDR2476 Réseaux Trophiques Aquatiques, and Région Languedoc-Roussillon. The authors thank the two anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fouilland.

Electronic supplementary material

ESM 1

(DOCX 45 kb)

ESM 2

(DOCX 44 kb)

ESM 3

(DOCX 21 kb)

ESM 4

(DOCX 44 kb)

ESM 5

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouilland, E., Trottet, A., Alves-de-Souza, C. et al. Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment. Microb Ecol 74, 289–301 (2017). https://doi.org/10.1007/s00248-017-0962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0962-6

Keywords

Navigation