Skip to main content
Log in

On \(L^{p}\)-theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

Elliptic and parabolic integro-differential model problems are considered in the whole space. By verifying Hörmander condition, the existence and uniqueness is proved in \(L_{p}\)-spaces of functions whose regularity is defined by a scalable, possibly nonsymmetric, Levy measure. Some rough probability density function estimates of the associated Levy process are used as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, H., Kim, D.: On \(L_{p}\)- estimates of non-local elliptic equations. J. Funct. Anal. 262, 1166–1199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Farkas, W., Jacob, N., Schilling, R.: Function spaces related to to continuous negative definite functions: \(\psi \)-Bessel potential spaces. Diss. Math. 393, 4–62 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  4. Kim, I., Kim, K.-H.: An \(L_{p}\)-theory for a class of non-local elliptic equations related to nonsymmetric measurable kernels. J. Math. Anal. Appl 434, 1302–1335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stoch. Proc. Appl. 124, 235–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Komatsu, T.: On the martingale problem for generators of stable processes with perturbations. Osaka J. Math. 21, 113–132 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. AMS, Boston (2008)

    Book  MATH  Google Scholar 

  8. Sato, K.: Levy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  9. Stein, E.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  10. Zhang, X.: \(L^{p}\)-maximal regularity of nonlocal parabolic equations and applications. Ann. I.H. Poincaré-AN 30, 573–614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the reviewer for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mikulevičius.

Appendix

Appendix

Given a function \(\kappa :\left( 0,\infty \right) \rightarrow \left( 0,\infty \right) \), consider the collection \({\mathbb {Q}}\) of sets \(Q_{\delta }=Q_{\delta }\left( t,x\right) =\left( t-\kappa \left( \delta \right) ,t+\kappa \left( \delta \right) \right) \times B_{\delta }\left( x\right) ,\left( t,x\right) \in {\mathbf {R}}\times {\mathbf {R}}^{d}={\mathbf {R}} ^{d+1},\delta >0\). The volume \(\left| Q_{\delta }\left( t,x\right) \right| =c_{0}\kappa \left( \delta \right) \delta ^{d}.\) We will need the following assumptions.

A1 \(\kappa \) is continuous, \(\lim _{\delta \rightarrow 0}\kappa \left( \delta \right) =0\) and \(\lim _{\delta \rightarrow \infty }\kappa \left( \delta \right) =\infty .\)

A2 There is a nondecreasing continuous function \(l\left( \varepsilon \right) ,\varepsilon >0,\) such that \(\lim _{\varepsilon \rightarrow 0}l\left( \varepsilon \right) =0\) and

$$\begin{aligned} \kappa \left( \varepsilon r\right) \le l\left( \varepsilon \right) \kappa (r),r>0,\varepsilon >0. \end{aligned}$$

Since \(Q_{\delta }\left( t,x\right) \) not “exactly” increases in \(\delta \), we present the basic estimates involving maximal functions based on the system \(\mathbb {Q=}\left\{ Q_{\delta }\right\} \).

1.1 Vitali lemma, maximal functions

We start with engulfing property.

Lemma 13

Let A2 hold. If \(Q_{\delta }\left( t,x\right) \cap Q_{\delta ^{\prime }}\left( r,z\right) \ne \emptyset \) with \(\delta ^{\prime }\le \delta \), then there is \(K_{0}\ge 3\) such that \( Q_{K_{0}\delta }\left( t,x\right) \) contains both, \(Q_{\delta }\left( t,x\right) \) and \(Q_{\delta ^{\prime }}\left( r,z\right) ,\) and

$$\begin{aligned} \left| Q_{\delta }\left( t,x\right) \right| \le \left| Q_{K_{0}\delta }\left( t,x\right) \right| \le K_{0}^{d}l\left( K_{0}\right) \left| Q_{\delta }\left( t,x\right) \right| . \end{aligned}$$

Proof

Let \(\left( s,y\right) \in Q_{\delta }\left( t,x\right) \cap Q_{\delta ^{\prime }}\left( r,z\right) \) with \(\delta ^{\prime }\le \delta .\) If \( \left( r^{\prime },z^{\prime }\right) \in Q_{\delta ^{\prime }}\left( r,z\right) \), then \(\left| z^{\prime }-x\right| \le 3\delta \), and using A2,

$$\begin{aligned} \left| r^{\prime }-t\right| \le \left| r^{\prime }-r\right| +\left| r-s\right| +\left| s-t\right| \le 2\kappa \left( \delta ^{\prime }\right) +\kappa \left( \delta \right) \le [2l\left( 1\right) +1]\kappa \left( \delta \right) . \end{aligned}$$

We choose \(K_{0}\ge 3\) so that \([2l\left( 1\right) +1]l(1/K_{0})\le 1\). By A2,

$$\begin{aligned}{}[2l\left( 1\right) +1]\kappa \left( \delta \right) \le [2l\left( 1\right) +1]l(1/K_{0})\kappa \left( K_{0}\delta \right) \le \kappa \left( K_{0}\delta \right) . \end{aligned}$$

Hence \(Q_{\delta ^{\prime }}\left( r,z\right) \subseteq Q_{K_{0}\delta }\left( t,x\right) \) and, obviously, \(Q_{\delta }\left( t,x\right) \subseteq Q_{K_{0}\delta }\left( t,x\right) \). Also,

$$\begin{aligned} \left| Q_{K_{0}\delta }\left( t,x\right) \right| =c_{0}K_{0}^{d}\delta ^{d}\kappa (K_{0}\delta )\le c_{0}K_{0}^{d}\delta ^{d}l(K_{0})\kappa (\delta )=K_{0}^{d}l(K_{0})\left| Q_{\delta }\left( t,x\right) \right| . \end{aligned}$$

\(\square \)

Now, following 3.1 in [9], we prove Vitali covering lemma.

Lemma 14

Let \(E\subseteq {\mathbf {R}}\times {\mathbf {R}}^{d}\) be a union of a finite collection \(\left\{ Q^{\prime }\right\} \) of sets from the system \( \{Q_{\delta }\left( t,x):(t,x\right) \in {\mathbf {R}}^{d+1},\delta >0\}\) and A2 hold.

There is a positive \(c=\frac{1}{K_{0}^{d}l\left( K_{0}\right) }\) and a disjoint subcollection \(\big \{ Q^{k}=Q_{\delta _{k}}\left( t_{k},x_{k}\right) ,1\le k\le m\big \} \) such that

$$\begin{aligned} \sum _{k=1}^{m}\left| Q^{k}\right| \ge c\left| E\right| . \end{aligned}$$

Proof

Let \(Q^{1}=Q_{\delta _{1}}\left( t_{1},x_{1}\right) \) be the set of the collection \(\left\{ Q^{\prime }\right\} \) with maximal \(\delta \). Let \( Q^{2}=Q_{\delta _{2}}\left( t_{2},x_{2}\right) \) be the set with maximal \( \delta \) among remaining sets in \(\left\{ Q^{\prime }\right\} \) that do not intersect \(Q^{1}\). According to Lemma 13, \(Q_{K_{0}\delta _{1}}\left( t_{1},x_{1}\right) \) contains \(Q^{1}\) and all \(Q_{\delta }\) in \(\left\{ Q^{\prime }\right\} \) that intersect \(Q^{1}\) and such that \(\delta \le \delta _{1}.\) Continuing we get \(Q_{K_{0}\delta _{k}}\left( t_{k},x_{k}\right) \) containing \(Q^{k}=Q_{\delta _{k}}\left( t_{k},x_{k}\right) \) and all \(Q_{\delta }\) in \(\left\{ Q^{\prime }\right\} \) that intersect \(Q^{k}\) and such that \(\delta \le \delta _{k}.\) So we obtain a finite disjoint subcollection \(\left\{ Q^{k}=Q_{\delta _{k}}\left( t_{k},x_{k}\right) ,1\le k\le m\right\} \) such that \(\cup _{k=1}^{m}Q_{K_{0}\delta _{k}}\left( t_{k},x_{k}\right) \supseteq Q_{\delta } \) for any \(Q^{\delta }\) in \(\left\{ Q^{\prime }\right\} .\) Hence \(\cup _{k=1}^{m}Q_{K_{0}\delta _{k}}\left( t_{k},x_{k}\right) \supseteq E\), and by Lemma 13,

$$\begin{aligned} \left| E\right| \le \sum _{k=1}^{m}\left| Q_{K_{0}\delta _{k}}\right| \le K_{0}^{d}l\left( K_{0}\right) \sum _{k=1}^{m}\left| Q^{k}\right| . \end{aligned}$$

\(\square \)

Remark 5

The statement of the Lemma 14 still holds if instead of A2 we assume that there is a constant C so that \(C\kappa \left( \delta \right) \ge \kappa \left( \delta ^{\prime }\right) \) whenever \( \delta \ge \delta ^{\prime }.\)

Following [9], for a locally integrable function \(f\left( t,x\right) \) on \({\mathbf {R}}^{d+1}\) we define

$$\begin{aligned} \left( A_{\delta }f\right) (t,x)=\frac{1}{\left| Q_{\delta }\left( t,x\right) \right| }\int _{Q_{\delta }\left( t,x\right) }f\left( s,y\right) dsdy,\left( t,x\right) \in \mathbf {R\times R}^{d},\delta >0 \end{aligned}$$

and the maximal function of f by

$$\begin{aligned} {\mathcal {M}}f\left( t,x\right) =\sup _{\delta >0}\left( A_{\delta }\left| f\right| \right) (t,x),\left( t,x\right) \in {\mathbf {R}}^{d+1}. \end{aligned}$$

We use collection \({\mathbb {Q}}\) to define a larger, noncentered maximal function of f, as

$$\begin{aligned} \widetilde{{\mathcal {M}}}f\left( t,x\right) =\sup _{\left( t,x\right) \in Q} \frac{1}{\left| Q\right| }\int _{Q}|f\left( s,y\right) |dsdy,\left( t,x\right) \in {\mathbf {R}}^{d+1}, \end{aligned}$$

where \(\sup \) is taken over all \(Q\in {\mathbb {Q}}\) that contain (tx).

Remark 6

Let A2 hold and \(K_{0}\) be a constant in Lemma 13 . For a locally integrable f on \({\mathbf {R}}^{d+1},\)

$$\begin{aligned} {\mathcal {M}}f\le \widetilde{{\mathcal {M}}}f\le \frac{1}{K_{0}^{d}l\left( K_{0}\right) }{\mathcal {M}}f. \end{aligned}$$

Indeed, if \((t,x)\in Q^{\prime }=Q_{\delta }\left( t^{\prime },x^{\prime }\right) \), then by Lemma 13

$$\begin{aligned} \frac{1}{\left| Q^{\prime }\right| }\int _{Q^{\prime }}\left| f\right| \le \frac{K_{0}^{d}l\left( K_{0}\right) }{\left| Q_{K_{0}\delta }\left( t,x\right) \right| }\int _{Q_{K_{0}\delta }\left( t,x\right) }\left| f\right| . \end{aligned}$$

Note \(\widetilde{{\mathcal {M}}}f\) is lower semicontinuous.

Theorem 1.3.1 in [9] holds for \({\mathbb {Q}}\) (we sketch its proof).

Theorem 3

Let A2 hold and f be measurable function on \({\mathbf {R}} ^{d+1}=\mathbf {R\times R}^{d}.\)

(a) :

If \(f\in L_{p},1\le p\le \infty \), then \({\mathcal {M}}f\) is finite a.e.

(b):

If \(f\in L_{1}\), then for every \(\alpha >0\),

$$\begin{aligned} \left| \left\{ {\mathcal {M}}f\left( t,x\right) >\alpha \right\} \right| \le \frac{c}{\alpha }\int |f|dtdx. \end{aligned}$$
(c):

If \(f\in L_{p},1<p\le \infty \), then \({\mathcal {M}}f\in L_{p}\) and

$$\begin{aligned} \left| {\mathcal {M}}f\right| _{L_{p}}\le N_{p}\left| f\right| _{L_{p}}, \end{aligned}$$

where \(N_{p}\) depends only on pl and \(K_{0}.\)

Proof

(b) Let \(E_{\alpha }=\left\{ \widetilde{{\mathcal {M}}}f\left( t,x\right) >\alpha \right\} \) and \(E\subseteq E_{\alpha }\) be any compact subset. Since \(\widetilde{{\mathcal {M}}}f\) is lower semicontinuous, \(E_{\alpha }\) is open. By definition of \(\widetilde{{\mathcal {M}}}f\) for each \(\left( t,x\right) \in E\), there is \(Q\in {\mathbb {Q}}\) so that \(\left( t,x\right) \in Q\) and

$$\begin{aligned} \left| Q\right| \le \frac{1}{\alpha }\int _{Q}\left| f\right| . \end{aligned}$$

Since E is compact there exist a finite number \(Q_{\delta _{1}}\left( t_{1},x_{1}\right) ,\ldots ,Q_{\delta _{n}}\left( t_{n},x_{n}\right) \in {\mathbb {Q}}\) so that \(E\subseteq \cup _{j=1}^{n}Q_{\delta _{j}}\left( t_{j},x_{j}\right) \). By Lemma 14, there is a subcovering of disjoint sets \(Q^{1},\ldots ,Q^{m}\) so that

$$\begin{aligned} \left| E\right| \le c\sum _{k=1}^{m}\left| Q^{k}\right| \le \frac{c}{\alpha }\sum _{k=1}^{m}\int _{Q^{k}}\left| f\right| \le \frac{c}{\alpha }\int \left| f\right| . \end{aligned}$$

with \(c=K_{0}^{d}l\left( K_{0}\right) \). Taking \(\sup \) over all such compacts E we get (b).

(c) Let \(f_{1}=f\chi _{\left\{ \left| f\right| >\alpha /2\right\} }\). Note that \(\widetilde{{\mathcal {M}}}f\le \widetilde{{\mathcal {M}} }f_{1}+\frac{\alpha }{2}.\) Hence by part (b)

$$\begin{aligned} \left| \left\{ \widetilde{{\mathcal {M}}}f>\alpha \right\} \right| \le \left| \left\{ \widetilde{{\mathcal {M}}}f_{1}>\alpha /2\right\} \right| \le \frac{2c}{\alpha }\int _{\left| f\right| >\alpha /2}\left| f\right| dm. \end{aligned}$$

On the other hand,

$$\begin{aligned} \int \left( \widetilde{{\mathcal {M}}}f\right) ^{p}= & {} p\int _{0}^{\infty }\left| \left\{ \widetilde{{\mathcal {M}}}f>\alpha \right\} \right| \alpha ^{p-1}d\alpha \\\le & {} 2cp\int \int _{0}^{2\left| f\right| }\alpha ^{p-2}d\alpha \left| f\right| =c\frac{p}{p-1}2^{p}\int \left| f\right| ^{p}. \end{aligned}$$

\(\square \)

Corollary 7

Let \(f\in L_{1}\). Then

$$\begin{aligned} \lim _{\delta \rightarrow 0}A_{\delta }f\left( t,x\right) =f\left( t,x\right) \text { a.e.} \end{aligned}$$

and \(\left| f\left( t,x\right) \right| \le {\mathcal {M}}f\left( t,x\right) \) a.e. Moreover, for every \(\alpha >0\),

$$\begin{aligned} \left| \left\{ \mathcal {{\tilde{M}}}f\left( t,x\right)>\alpha \right\} \right| \le \frac{2c}{\alpha }\int _{\left\{ \mathcal {{\tilde{M}}}f\left( t,x\right) >\alpha /2\right\} }|f|dm, \end{aligned}$$

where c is a constant in Theorem 3.

Proof

Let \(f\in L_{1},\varepsilon >0\). There is \(g\in C_{c}\left( {\mathbf {R}} ^{d+1}\right) \) so that \(\left| f-g\right| _{L_{1}}\le \varepsilon \) . Let \(\eta >0\). Since g is uniformly continuous, for all \(\left( t,x\right) \)

$$\begin{aligned}&\left| A_{\delta }g\left( t,x\right) -g\left( t,x\right) \right| \\&\quad \le \frac{1}{\left| Q_{\delta }\left( t,x\right) \right| } \int _{Q_{\delta }\left( t,x\right) }\left| g\left( s,y\right) -g\left( t,x\right) \right| dsdy\le \eta \end{aligned}$$

if \(\delta \le \delta _{0}\) for some \(\delta _{0}>0\). Hence \( \sup _{t,x}\left| A_{\delta }g\left( t,x\right) -g\left( t,x\right) \right| \rightarrow 0\) as \(\delta \rightarrow 0.\) Now for \(\left( t,x\right) \in {\mathbf {R}}^{d+1},\)

$$\begin{aligned}&\lim \sup _{\delta \rightarrow 0}\left| A_{\delta }f\left( t,x\right) -f\left( t,x\right) \right| \\&\quad \le \lim \sup _{\delta \rightarrow 0}\left| A_{\delta }f\left( t,x\right) -A_{\delta }g\left( t,x\right) \right| +\left| g\left( t,x\right) -f\left( t,x\right) \right| \\&\quad \le {\mathcal {M}}\left( f-g\right) \left( t,x\right) +\left| g\left( t,x\right) -f\left( t,x\right) \right| . \end{aligned}$$

Hence for any \(\alpha >0,\) by Theorem 3,

$$\begin{aligned}&\left| \left\{ \lim \sup _{\delta \rightarrow 0}\left| A_{\delta }f\left( t,x\right) -f\left( t,x\right) \right|>\alpha \right\} \right| \\&\quad \le \left| \left\{ {\mathcal {M}}\left( f-g\right)>\alpha /2\right\} \right| +\left| \left\{ \left| g-f\right| >\alpha /2\right\} \right| \\&\quad \le \frac{2c\varepsilon }{\alpha }+\frac{2\varepsilon }{\alpha }. \end{aligned}$$

Since \(\varepsilon \) and \(\alpha \) are arbitrary, it follows that \(\lim \sup _{\delta \rightarrow 0}\left| A_{\delta }f\left( t,x\right) -f\left( t,x\right) \right| =0\) a.e. Hence for almost all \(\left( t,x\right) ,\)

$$\begin{aligned} \left| f\left( t,x\right) \right|= & {} \left| \lim _{\delta \rightarrow 0}A_{\delta }f\left( t,x\right) \right| \le \lim _{\delta \rightarrow 0}\frac{1}{\left| Q_{\delta }\left( t,x\right) \right| } \int _{Q_{\delta }\left( t,x\right) }\left| f\left( t,y\right) \right| dtdy \\\le & {} \sup _{\delta >0}\frac{1}{\left| Q_{\delta }\left( t,x\right) \right| }\int _{Q_{\delta }\left( t,x\right) }\left| f\left( t,y\right) \right| dtdy={\mathcal {M}}f\left( t,x\right) . \end{aligned}$$

Finally, for \(f_{1}=f\chi _{\left\{ \left| f\right| >\alpha /2\right\} }\) we have \(\mathcal {{\tilde{M}}}f\le \mathcal {{\tilde{M}}}f_{1}+ \frac{\alpha }{2}\), and by Theorem 3(b),

$$\begin{aligned} \left| \left\{ \mathcal {{\tilde{M}}}f>\alpha \right\} \right| \le \left| \left\{ \mathcal {{\tilde{M}}}f_{1}>\alpha /2\right\} \right| \le \frac{2c}{\alpha }\int _{\left| f\right|>\alpha /2}\left| f\right| \le \frac{2c}{\alpha }\int _{\mathcal {{\tilde{M}}}f>\alpha /2}\left| f\right| . \end{aligned}$$

\(\square \)

1.2 Calderon–Zygmund decomposition

Assume A1, A2 hold. Let \(F\subseteq \mathbf {R\times R}^{d}\) be closed and \(O=F^{c}={\mathbf {R}}^{d+1}\backslash F.\) For \(\left( t,x\right) \in O\), let

$$\begin{aligned} D\left( t,x\right) =\inf \left\{ \delta >0:Q_{\delta }\left( t,x\right) \cap F\ne \emptyset \right\} . \end{aligned}$$

For each \(\left( t,x\right) \in O\), \(D\left( t,x\right) \in \left( 0,\infty \right) \). Let \(K_{0}\) be a constant in Lemma 13. We fix \(A>1\) so that \(l\left( 1/A\right) <1\) and \(\varepsilon >0\) so that \(l\left( 2K_{0}\varepsilon \right)<1,\varepsilon \le \frac{1}{4AK_{0}^{3}}<1.\) Then, denoting \(D=D(t,x),\) we have

$$\begin{aligned}&\kappa \left( \varepsilon D\right) \le l\left( 2\varepsilon \right) \kappa \left( D/2\right) \le \kappa \left( \frac{D}{2}\right) ,\kappa \left( \varepsilon D\right) \le l\left( \varepsilon \right) \kappa \left( D\right) \le \kappa \left( D\right) ,\\&\kappa (D)\le l\left( 1/A\right) \kappa \left( AD\right) <\kappa \left( AD\right) , \end{aligned}$$

and

$$\begin{aligned} \kappa \left( \varepsilon D\right) \le l\left( 2K_{0}\varepsilon \right) \kappa \left( D/2K_{0}\right) \le \kappa \left( D/2K_{0}\right) . \end{aligned}$$

Consider the covering \(Q_{\varepsilon D(t,x)}\left( t,x\right) ,\left( t,x\right) \in O\), of O. Let

$$\begin{aligned} Q^{k}=Q_{\varepsilon D(t_{k},x_{k})}\left( t_{k},x_{k}\right) ,k\ge 1, \end{aligned}$$

be its maximal disjoint subcollection: for any \(Q_{\varepsilon D\left( t,x\right) }\left( t,x\right) \) there is k so that \(Q_{\varepsilon D\left( t,x\right) }(t,x)\cap Q^{k}\ne \emptyset .\) Let

$$\begin{aligned} Q^{*k}=Q_{D(t_{k},x_{k})/2}\left( t_{k},x_{k}\right) ,Q^{**k}=Q_{AD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) . \end{aligned}$$

Note that \(Q^{k}\subseteq Q^{*k}\subseteq Q_{D(t_{k},x_{k})}\left( t_{k},x_{k}\right) \subseteq O,Q^{**k}\cap F\ne \emptyset \). We will show that \(\cup _{k}Q^{*k}=O\). Let \(\left( t,x\right) \in O\) and \( Q_{\varepsilon D\left( t_{k}x_{k}\right) }\left( t_{k},x_{k}\right) \cap Q_{\varepsilon D(t,x)}\left( t,x\right) \ne \emptyset \) for some k. Since

$$\begin{aligned} Q_{\varepsilon D\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right)\subseteq & {} Q_{D\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \subseteq Q_{AD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) , \\ Q_{\varepsilon D\left( t,x\right) }\left( t,x\right)\subseteq & {} Q_{D(t,x)/(2K_{0})}, \end{aligned}$$

it follows that

$$\begin{aligned} Q_{D(t,x)/(2K_{0})}\left( t,x\right) \cap Q_{AD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \ne \emptyset . \end{aligned}$$

We show by contradiction that \(AD\left( t_{k},x_{k}\right) \ge D\left( t,x\right) /2K_{0}.\) If not so, then \(AD\left( t_{k},x_{k}\right) <D\left( t,x\right) /2K_{0}\), and, by Lemma 13, \(Q_{D(t,x)/2K_{0}} \left( t,x\right) \) and \(Q_{AD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \) are contained in \(Q_{_{D\left( t,x\right) /2}}(t,x)\subseteq O\): a contradiction to \(Q_{AD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \cap F\ne \emptyset .\) Therefore \(AD\left( t_{k},x_{k}\right) \ge D\left( t,x\right) /2K_{0}\) and \(2AK_{0}\varepsilon D\left( t_{k},x_{k}\right) \ge \varepsilon D\left( t,x\right) \). Now, \( Q_{\varepsilon D\left( t_{k}x_{k}\right) }\left( t_{k},x_{k}\right) \subseteq Q_{2AK_{0}\varepsilon D\left( t_{k}x_{k}\right) }\left( t_{k},x_{k}\right) \) and \(Q_{\varepsilon D\left( t_{k}x_{k}\right) }\left( t_{k},x_{k}\right) \cap Q_{\varepsilon D(t,x)}\left( t,x\right) \ne \emptyset \,\). Hence by Lemma 13, \(Q_{\varepsilon D\left( t,x\right) } \) is contained in \(Q_{2AK_{0}^{2}\varepsilon D\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \). Since \(2AK_{0}^{2}\varepsilon \le \frac{1}{ 2K_{0}}\), it follows by Lemma 13 that

$$\begin{aligned} Q_{\varepsilon D\left( t,x\right) }\left( t,x\right) \subseteq Q_{2AK_{0}^{2}\varepsilon D\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \subseteq Q_{D\left( t_{k},x_{k}\right) /2}\left( t_{k},x_{k}\right) =Q^{*k}. \end{aligned}$$

So we proved the following statement.

Lemma 15

(cf. Lemma 2 in Chapter I, 3.2 of [9]) Assume A1, A2 hold. Given a closed nonempty F, there are sequences \(Q^{k}\), \( Q^{*k}\) and \(Q^{**k}\) in \({\mathbb {Q}}\) having the same center but with radius expanded by the same factor \(c_{1}^{**}>c_{1}^{*}>c_{1}\,\ \) so that \(Q^{k}\subseteq Q^{*k}\subseteq Q^{**k}\) (all of them are of the form \(Q_{bD\left( t_{k},x_{k}\right) }\left( t_{k},x_{k}\right) \) with \(b=c_{1},c_{1}^{*},c_{1}^{**}\) correspondingly) and

(a) :

the sets \(Q^{k}\) are disjoint.

(b) :

\(\cup _{k}Q^{*k}=O=F^{c}.\)

(c) :

\(Q^{**k}\cap F\ne \emptyset \) for each k.

Remark 7

Assume A1, A2 hold and \(Q^{k}\subseteq Q^{*k}\subseteq Q^{**k}\) be the sequences in \({\mathbb {Q}}\) from Lemma . It is easy to find a sequence of disjoint measurable sets \(C^{k}\) so that \(Q^{k}\subseteq C^{k}\subseteq Q^{*k}\) and \(\cup _{k}C^{k}=O\). For example (see Remark, p. 15, in [9]),

$$\begin{aligned} C^{k}=Q^{*k}\cap \left( \cup _{j<k}C^{j}\right) ^{c}\cap \left( \cup _{j>k}Q^{j}\right) ^{c}. \end{aligned}$$

Now we derive Calderon–Zygmund decomposition for \({\mathbb {Q}}.\,\ \)

Theorem 4

(cf. Theorem 2 in Chapter I, 4.1 of [9]) Assume A1, A2 hold. Let \(f\in L_{1}\left( \mathbf {R\times R}^{d}\right) \), \(\alpha >0\) and \(O_{\alpha }=\left\{ \widetilde{{\mathcal {M}}}f>\alpha \right\} .\) Consider the sets \(Q^{k}\subseteq C^{k}\subseteq Q^{*k}\subseteq O_{\alpha }\) of Lemma 15 and Remark 7 associated to \(O_{\alpha }.\)

There is a decomposition \(f=g+b\) with

$$\begin{aligned} g\left( t,x\right) =\left\{ \begin{array}{ll} f(t,x) &{} \text {if }(t,x)\notin O_{\alpha }, \\ \frac{1}{\left| C^{k}\right| }\int _{C^{k}}f &{} \text { if }(t,x)\in C^{k},k\ge 1, \end{array} \right. \end{aligned}$$
(4.34)

and with \(b=\sum _{k}b_{k}\), where

$$\begin{aligned} b_{k}=\chi _{C^{k}}\left[ f\left( x\right) -\frac{1}{\left| C^{k}\right| }\int _{C^{k}}f\text { }\right] ,k\ge 1, \end{aligned}$$
(4.35)

(note \(C^{k}\) are disjoint, \(\cup _{k}C^{k}=O_{\alpha }\)). Also,

(i) :

\(\left| g\left( t,x\right) \right| \le c\alpha \) for a.e. x.

(ii) :

support(\(b_{k})\subseteq Q^{*k},\)

$$\begin{aligned} \int b_{k}=0\text { and }\int \left| b_{k}\right| \le c\alpha \left| Q^{*k}\right| . \end{aligned}$$
(iii) :

\(\sum _{k}\left| Q^{*k}\right| \le \frac{c}{\alpha }\int \left| f\right| .\)

Proof

The set \(O_{\alpha }=\left\{ \widetilde{{\mathcal {M}}}f>\alpha \right\} \) is open. We can apply Lemma 15 and Remark 7 to it and consider the sets \(Q^{k}\subseteq C^{k}\subseteq Q^{*k}\subseteq O_{\alpha }\) with \(C^{k}\) disjoint and \(\cup _{k}C^{k}=O_{\alpha }.\)

Define g by (4.34). Hence \(f=g+\sum _{k}b_{k}\) with \(b_{k}\) given by ( 4.35). Obviously

$$\begin{aligned} \sum _{k}\left| Q^{k}\right| \le \left| O_{\alpha }\right| . \end{aligned}$$

(i) By Corollary 7, \(\left| f\left( t,x\right) \right| \le \alpha \) a.e. on \(O_{\alpha }^{c}=\left\{ \widetilde{{\mathcal {M}}}f\left( t,x\right) \le \alpha \right\} \). Hence :  so \(\left| g\left( x\right) \right| \le \alpha \) a.e. on \(O_{\alpha }^{c}\). On the other hand, if \( Q^{**k}\in {\mathbb {Q}}\) is the sequence of Lemma 15, then

$$\begin{aligned} \frac{1}{\left| Q^{**k}\right| }\int _{Q^{**k}}\left| f\right| \le \alpha \end{aligned}$$

because \(Q^{**k}\cap O_{\alpha }^{c}\ne \emptyset \) and \(\widetilde{ {\mathcal {M}}}f\left( t,x\right) \le \alpha \) on \(O_{\alpha }^{c}\) (the definition of \(\widetilde{{\mathcal {M}}}\) implies it). Since \(\left| Q^{k}\right| \le \left| C^{k}\right| \le \left| Q^{*k}\right| \le \left| Q^{**k}\right| \le l\left( \frac{ c_{1}^{**}}{c_{1}}\right) \left| Q^{k}\right| \) and \( C^{k}\subseteq Q^{**k}\), it follows that

$$\begin{aligned} \left| g\right| \le c\alpha . \end{aligned}$$

(ii) Only inequality is not trivial:

$$\begin{aligned} \int \left| b_{k}\right| \le 2\int _{C^{k}}\left| f\right| \le 2\left| Q^{**k}\right| \frac{1}{\left| Q^{**k}\right| }\int _{Q^{**k}}\left| f\right| \le c\alpha \left| Q^{*k}\right| . \end{aligned}$$

(iii) We have

$$\begin{aligned} \left| O_{\alpha }\right| =\left| \left\{ \widetilde{{\mathcal {M}}} f\left( t,x\right) >\alpha \right\} \right| \ge \sum _{k}\left| Q^{k}\right| \ge {\tilde{c}}\sum _{k}\left| Q^{*k}\right| \end{aligned}$$

and the inequality follows by Theorem 3. \(\square \)

1.3 \(L_{p}\)-estimates

Let

$$\begin{aligned} \left( Tf\right) \left( t,x\right) =\int _{{\mathbf {R}}^{d+1}}K\left( t,x,s,y\right) f\left( s,y\right) dsdy,(t,x)\in {\mathbf {R}}^{d+1}, \end{aligned}$$

where K is measurable and for almost all \(\left( t,x\right) \in {\mathbf {R}} ^{d+1}\) the function \(K\left( t,x,\cdot \right) f\) is integrable for all \( f\in C_{0}^{\infty }\left( {\mathbf {R}}^{d+1}\right) .\) We assume that T is bounded on \(L_{q}\):

$$\begin{aligned} \left| Tf\right| _{L_{q}}\le C\left| f\right| _{L_{q}},f\in L_{q}. \end{aligned}$$
(4.36)

In addition, we assume that Hörmander condition holds: there are constants \(c>1,A>0\) so that for any \(Q_{\delta }\in {\mathbb {Q}}\),

$$\begin{aligned} \int _{{\mathbf {R}}^{d+1}\backslash Q_{c\delta }\left( s,y\right) }\left| K\left( t,x,{\bar{s}},{\bar{y}}\right) -K\left( t,x,s,y\right) \right| dxdt\le A,({\bar{s}},{\bar{y}})\in Q_{\delta }\left( s,y\right) . \end{aligned}$$
(4.37)

Theorem 5

(cf. Theorem 3 of Chapter I, 5.1 in [9] ) Let A1, A2, (4.36) and (4.37) hold. Then T is bounded in \(L_{p}\)-norm on \(L_{p}\cap L_{q}\) if \(1<p<q\). More precisely,

$$\begin{aligned} \left| T\left( f\right) \right| _{L_{p}}\le A_{p}\left| f\right| _{L_{p}},f\in L_{p}\cap L_{q},1<p<q, \end{aligned}$$

where \(A_{p}\) depends only on the constant A and p.

Proof

By Marcinkiewicz interpolation theorem (see [9]), it is enough to prove that

$$\begin{aligned} m\left( \left| Tf\right|>\alpha \right) \le \frac{A^{\prime }}{ \alpha }\int \left| f\right| dxdt,f\in L_{1}\cap L_{q},\alpha >0, \end{aligned}$$

where \(A^{\prime }\) depends on A.

For a large constant \(c^{\prime }\) (to be determined) we estimate \(m\left( \left| Tf\right| >c^{\prime }\alpha \right) \). For a fixed \(\alpha >0 \) we consider the decomposition \(f=g+b\) in Theorem 4. First note that

$$\begin{aligned} m\left( \cup _{n}Q_{n}^{**}\right) \le \sum _{n}m\left( Q_{n}^{**}\right) \le c\sum _{n}m\left( Q_{n}^{*}\right) \le \frac{c}{ \alpha }\int \left| f\right| . \end{aligned}$$

It is enough to show that

$$\begin{aligned} \left| \left\{ \left| Tg\right|>\left( c^{\prime }/2\right) \alpha \right\} \right| +\left| \left\{ \left| Tb\right| >\left( c^{\prime }/2\right) \alpha \right\} \right| \le A^{\prime }/\alpha \int \left| f\right| dx. \end{aligned}$$

First notice that \(g\in L_{q}\). Indeed (recall \(\cup _{k}Q_{k}^{*}=\cup _{k}C_{k}\)),

$$\begin{aligned} \int \left| g\right| ^{q}=\int _{\left( \cup _{k}Q_{k}^{*}\right) ^{c}}|g|^{q}+\int _{\cup _{k}C_{k}}\left| g\right| ^{q}\le c\alpha ^{q-1}\int |f| \end{aligned}$$

because

$$\begin{aligned} \int _{\left( \cup _{k}Q_{k}^{*}\right) ^{c}}\left| g\right| ^{q}\le & {} \alpha ^{q-1}\int _{\left( \cup _{k}Q_{k}^{*}\right) ^{c}}|f|, \\ \int _{\cup _{k}Q_{k}^{*}}\left| g\right| ^{q}\le & {} c\alpha ^{q}\sum _{k}\left| Q_{k}^{*}\right| \le c\alpha ^{q-1}\int \left| f\right| . \end{aligned}$$

By Chebyshev inequality,

$$\begin{aligned}&\left| \left\{ \left| Tg\right| >\left( c^{\prime }/2\right) \alpha \right\} \right| \le \left( \frac{c^{\prime }\alpha }{2}\right) ^{-q}\left| Tg\right| _{L_{q}}^{q}\le \left( \frac{c^{\prime }\alpha }{2}\right) ^{-q}A^{q}\left| g\right| _{L_{q}}^{q} \\&\quad \le c\left( \frac{c^{\prime }\alpha }{2}\right) ^{-q}A^{q}\alpha ^{q-1}\int \left| f\right| \le \frac{A^{\prime }}{\alpha } \left| f\right| _{L_{1}}, \end{aligned}$$

and

$$\begin{aligned} \int _{\left( \cup _{k}Q_{k}^{**}\right) ^{c}}|Tb|\le \sum _{k}\int _{\left( Q_{k}^{**}\right) ^{c}}\left| Tb_{k}\right| . \end{aligned}$$

Let \((s_{k},y_{k})\) be the center of \(Q_{k}^{*}\) (and \(Q_{k}^{**} \)). Since for \(x\notin Q_{k}^{*},\) we have, denoting \( f_{k}=1/\left| C^{k}\right| \int _{C_{k}}f\),

$$\begin{aligned} Tb_{k}= & {} \int _{C_{k}}K\left( t,x,s,y\right) [f\left( s,y\right) -f_{k}]dsdy\\= & {} \int _{C_{k}}[K\left( t,x,s,y\right) -K\left( t,x,s_{k},y_{k}\right) ][f\left( s,y\right) -f_{k}]dsdy, \end{aligned}$$

and

$$\begin{aligned}&\int _{(Q_{k}^{**})^{c}}\left| Tb_{k}\right| dtdx \\&\quad \le \int ~\left| b_{k}\right| dsdy\sup _{(s,y)\in Q_{k}^{*}}\int _{(Q_{k}^{**})^{c}}|K\left( t,x,s,y\right) -K\left( t,x,s_{k},y_{k}\right) |dtdx\le cA\alpha \left| Q_{k}^{*}\right| . \end{aligned}$$

Hence

$$\begin{aligned} \int _{\left( \cup _{k}Q_{k}^{**}\right) ^{c}}|Tb|\le cA\alpha \sum _{k}\left| Q_{k}^{*}\right| \le cA\int \left| f\right| . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulevičius, R., Phonsom, C. On \(L^{p}\)-theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space. Stoch PDE: Anal Comp 5, 472–519 (2017). https://doi.org/10.1007/s40072-017-0095-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-017-0095-4

Keywords

Mathematics Subject Classification

Navigation