Skip to main content
Log in

Velocity Change in the Zone of a Moderate Mw 5.0 Earthquake Revealed by Autocorrelations of Ambient Noise and by Event Spectra

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A moderate Mw 5.0 earthquake occurred near Mogul, Nevada (just west of Reno, Nevada), on 26 April 2008. This mainshock was surrounded by notable foreshock and aftershock sequences. Due to the long foreshock sequence, the area was well instrumented at the time of the mainshock. We investigated the foreshock and aftershock sequences for evidence of velocity changes in the structure immediate to the hypocenter and above it in the area of observed strong ground motion. Using autocorrelations of the time periods with nearly continuous foreshocks and aftershocks, we detected a nearly 1% negative change in velocity on recordings of station MOGL which was approximately over the hypocenter of the mainshock. We also observed from these recordings a shift in the spectral peaks to lower frequency following the mainshock, again indicative of a velocity decrease. Due to the different spatial sampling of the two methods, the effects could not be attributed to the same subsurface volume. However, both results are strong evidence for coseismic velocity changes accompanying an earthquake which is very much smaller than those for which previous velocity changes have been reported. We hypothesize that these changes can be observed for even smaller earthquakes, given a fortuitous placement of observing stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, J. G., Tibuleac, I. M., Anooshehpoor, A., Biasi, G., Smith, K., & von Seggern, D. (2009). Exceptional ground motions recorded during the 26 April 2008 Mw 5.0 earthquake in Mogul, Nevada. Bulletin of the Seismological Society of America, 99, 3475–3486. doi:10.1785/0120080352.

    Article  Google Scholar 

  • Assimaki, D., Li, W., Steidl, J. H., & Tsuda, K. (2008). Site amplification and attenuation via downhole array seismogram inversion: A comparative study of the 2003 Miyagi-Oki aftershock sequence. Bulletin of the Seismological Society of America, 98, 301–330. doi:10.1785/0120070030.

    Article  Google Scholar 

  • Bell, J. W., Amelung, F., & Henry, C. D. (2012). InSAR analysis of the 2008 Reno-Mogul earthquake swarm: Evidence for westward migration of Walker Lane style dextral faulting. Geophysical Research Letters, 39, L18306. doi:10.1029/2012GL052795.

    Article  Google Scholar 

  • Blewitt, G., J. Bell, W. C. Hammond, C. Kreemer, H. Plag, and C. dePolo (2008). GPS and InSAR monitoring of the Mogul swarm: Evidence for mainly aseismic fault creep with implications for seismic hazard, Eos Transactions AGU, 89, Fall Meet. Suppl. Abstract S53C-03.

  • Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., et al. (2014). Mapping pressurized fluid fields from induced crustal seismic velocity drops. Science, 345, 80–82. doi:10.1126/science.1254073.

    Article  Google Scholar 

  • Brenquier, F., Campillo, M., Hadsiioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science, 321, 1478–1481. doi:10.1126/science.1160943.

    Article  Google Scholar 

  • Chao, K., & Peng, Zhigang. (2009). Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M 6.4 Chia-Yi, Taiwan earthquake. Geophysical Journal International, 179, 1800–1816. doi:10.1111/j.1365-246X.2009.04384.x.

    Article  Google Scholar 

  • Chaves, E. J., & Schwartz, S. Y. (2016). Monitoring transient changes within overpressure regions of subduction zones using ambient seismic noise. Science Advances, 2, e1501289. doi:10.1126/sciadv.1501289.

    Article  Google Scholar 

  • Claerbout, J. F. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33, 264–269. doi:10.1190/1.1439927.

    Article  Google Scholar 

  • Claerbout, J. F. (1985). Fundamentals of geophysical data processing. Oxford: Blackwell Scientific Publ.

    Google Scholar 

  • Ducellier, A., Kawase, H., & Matsushima, S. (2013). Validation of a new velocity structure inversion method based on horizontal-to-vertical (H/V) spectral ratios of earthquake motions in the Tohoku area, Japan. Bulletin of the Seismological Society of America, 103, 958–970. doi:10.1785/0120120214.

    Article  Google Scholar 

  • Ellsworth, W. L., Cole, A. T., Beroza, G. C., & Verwoerd, M. C. (1992). Changes in crustal wave velocity associated with the 1989 Loma Prieta, California, earthquake, EOS, 1992 Fall Meeting Supplement. Abstract S21D-1.

  • Field, E. H., Johnson, P. A., Beresnev, I. A., & Zeng, Y. (1997). Nonlinear ground-motion amplifications by sediments during the 1994 Northridge earthquake. Nature, 390, 599–602. doi:10.1038/37586.

    Article  Google Scholar 

  • Gouedard, P., Stehly, L., Brenguier, F., Campillo, M., Coin de Verdiere, Y., Larose, E., et al. (2008). Cross-correlation of random fields: mathematical approach and applications. Geophysical Prospecting, 56, 375–393. doi:10.1111/j.1365-2478.2007.00684.x.

    Article  Google Scholar 

  • Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2012). Coseismic and post seismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan. Journal of Geophysical Research, 117, B09313. doi:10.1029/2012JB009402.

    Article  Google Scholar 

  • Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2016). Coseismic and post-seismic velocity changes detected by passive image interferometry: Comparison of one great and five strong earthquakes in Japan. Geophysical Journal International, 205, 1053–1073. doi:10.1093/gji/ggw066.

    Article  Google Scholar 

  • Kawase, H., Sanchez-Sesma, F. J., & Matsushima, S. (2011). The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101, 2001–2014. doi:10.1785/0120100263.

    Article  Google Scholar 

  • Lesage, P., Reyes-Davila, G., & Arambula-Mendoza, R. (2014). Large tectonic earthquakes indice starp temporary decreases in seismic velocity in Vocal de Colima, Mexico. Journal of Geophysical Research: Solid Earth, 119, 4360–4376. doi:10.1002/2013JB010884.

    Google Scholar 

  • Li, Y.-G., Chen, P., Cochran, E. S., Vidale, J. E., & Burette, T. (2006). Seismic evidence for rock damage and healing on the San Andreas Fault associated with the 2004 M 6.0 Parkfield earthquake. Bulletin of the Seismological Society of America, 96, S349–S363. doi:10.1785/0120050803.

    Article  Google Scholar 

  • Liu, Z., Huang, J., Peng, Z., & Su, J. (2014). Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques. Geophysical Research Letters, 41, 37–42. doi:10.1002/2013GL058682.

    Article  Google Scholar 

  • Luco, J. E., & Apsel, R. J. (1983). On the Green’s functions for a layered half-space. Part I. Bulletin of the Seismological Society of America, 73, 909–929.

    Google Scholar 

  • Maeda, T., Obara, K., & Yikutake, Y. (2010). Seismic velocity decrease and recovery related to earthquake swarms in a geothermal area. Earth Planets Space, 62, 685–691. doi:10.5047/eps.2010.08.006.

    Article  Google Scholar 

  • Minato, S., Tsuji, T., Ohmi, S., & Matsuoka, T. (2012). Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records. Geophysical Research Letters, 39, L09309. doi:10.1029/2012GL051405.

    Article  Google Scholar 

  • Nakamura, A., Hasegawa, A., Hirata, N., Iwasaki, T., & Yamaguchi, H. (2002). Temporal variations of seismic wave velocity associated with 1998 M 6.1 Shizukuishi earthquake. Pure and Applied Geophysics, 159, 1183–1203. doi:10.1007/s00024-002-8677-z.

    Article  Google Scholar 

  • Nishimura, T., Tanaka, S., Yamawaki, T., Yamamoto, H., Sano, T., Sato, M., Nakahara, H., Uchida, N., Hori, S., & Sato, H. (2005). Temporal changes in seismic velocity of the crust around Iwate volcano, Japan, as inferred from analyses of repeated active seismic experiment data from 1998 to 2003. Earth Planets Space, 57, 491–505. doi:10.1186/BF03352583.

    Article  Google Scholar 

  • Olivier, G., Brenguier, F., Campillo, M., Roux, P., Shapiro, N. M., & Lynch, R. (2015). Investigation of coseismic and post seismic processes using in situ measurements of seismic velocity variations in an underground mine. Geophysical Research Letters, 42, 9261–9269. doi:10.1002/2015GL065975.

    Article  Google Scholar 

  • Pancha, A., Pullammanappallil, S., & Louie, J. N. (2012). Assessment of site conditions and empirical site response at stations recording near-field extreme ground motions during the 2008 Mogul, Nevada earthquake swarm, NEHRP Final Technical Report for Grant G11AP20022, http://earthquake.usgs.gov.

  • Pandolfi, D., Bean, C. J., & Saccorotti, G. (2006). Coda wave interferometric detection of seismic velocity changes associated with the 1999 M = 3.6 event at Mt. Vesuvius. Geophysical Research Letters, 33, L06306. doi:10.1029/2005GL025355.

    Article  Google Scholar 

  • Pavlenko, O. V., & Irikura, K. (2005). Identification of the non-linear behavior of liquefied and non-liquefied soils during the 1995 Kobe earthquake. Geophysical Journal International, 160, 539–553. doi:10.1111/j.1365-246X.2005.02230.x.

    Article  Google Scholar 

  • Peng, Z., & Ben-Zion, Y. (2006). Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the North Anatolian Fault and strong ground motion. Pure and Applied Geophysics, 163, 567–600. doi:10.1007/s00024-005-0034-6.

    Article  Google Scholar 

  • Poupinet, G., Ellsworth, W. L., & Freshet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research, 89, 5719–5731. doi:10.1029/JB089iB07p05719.

    Article  Google Scholar 

  • Richter, T., Sens-Schonfelder, C., Kind, R., & Asch, G. (2014). Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. Journal of Geophysical Research: Solid Earth, 119, 4747–4765. doi:10.1002/2013JB010695.

    Google Scholar 

  • Rubenstein, J. L., & Beroza, G. C. (2004a). Evidence for widespread nonlinear strong ground motion in the Mw 6.9 Loma Prieta earthquake. Bulletin of the Seismological Society of America, 94, 1595–1608. doi:10.1785/012004009.

    Article  Google Scholar 

  • Rubenstein, J. L., & Beroza, G. C. (2004b). Nonlinear strong ground motion in the ML 5.4 Chittenden earthquake: Evidence that preexisting damage increases susceptibility to further damage. Geophysical Research Letters, 31, L23614. doi:10.1029/2004GL021357.

    Google Scholar 

  • Rubenstein, J. L., Uchida, N., & Beroza, G. C. (2007). Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake. Journal of Geophysical Research, 112, B05315. doi:10.1029/2006JB004440.

    Google Scholar 

  • Sanchez-Sesma, F. J., Rodriguez, M., Iturraran-Viveros, U., Luzon, F., Campillo, M., Margarin, L., et al. (2011). A theory for microtremor H/V spectral ratio: Application for a layered medium. Geophysical Journal International, 186, 221–225. doi:10.1111/j.1365-246X.2011.05064.x.

    Article  Google Scholar 

  • Sawazaki, K., Sato, H., Nakahara, H., & Nishimura, T. (2009). Time-lapse changes of seismic velocity in the shallow ground caused by strong ground motion shock of the 2000 western-Tottori earthquake, Japan, as revealed from coda deconvolution analysis. Bulletin of the Seismological Society of America, 99, 352–366. doi:10.1785/0120080058.

    Article  Google Scholar 

  • Schaff, D., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research, 109, B10302. doi:10.1029/2004JB003011.

    Article  Google Scholar 

  • Scholz, C. H. (2002). The mechanics of earthquakes and faulting (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Sens-Schonfelder, C., & Wegler, U. (2011). Passive image interferometry for monitoring crustal changes with ambient seismic noise. Comptes Rendus Geoscience, 343, 639–651. doi:10.1016/j.crte.2011.02.005.

    Article  Google Scholar 

  • Tonegawa, T., Fukao, Y., Nishida, K., Sugioka, H., & Ito, A. (2013). A temporal change of shear wave anisotropy within the marine sedimentary layer associated with the 2011 Tohoku-Oki earthquake. Journal of Geophysical Research, 118, 607–615. doi:10.1002/jgrb.50074.

    Google Scholar 

  • Tsuda, K., Steidl, J., Archuleta, R., & Assimaki, D. (2006). Site-response estimation for the 2003 Miyagi-Oki earthquake sequence considering nonlinear site response. Bulletin of the Seismological Society of America, 96, 1474–1482. doi:10.1785/0120050160.

    Article  Google Scholar 

  • Ueno, T., Saito, T., Shiomi, K., Enescu, B., Hirose, H., & Obara, K. (2012). Fractional seismic velocity change related to magma intrusions during earthquake swarms in the eastern Izu peninsula, central Japan. Journal of Geophysical Research, 117, B12305. doi:10.1029/2012JB009580.

    Google Scholar 

  • von Seggern, D. H., Anderson, J. G., Tibuleac, I. M., & Biasi, G. P. (2015). Double-difference location and ground-truth classification of the 2008 Mogul, Nevada, very shallow earthquake sequence. Seismological Research Letters, 86, 146–157. doi:10.1785/0220140121.

    Article  Google Scholar 

  • Wapenaar, K. (2004). Retrieving the elastodynamic Greens function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93, 2543014. doi:10.1103/PhysRevLett.93.254301.

    Article  Google Scholar 

  • Wegler, U., Nakahara, H., Sens-Schonfelder, C., Kom, M., & Shiomi, K. (2009). Sudden drop of seismic velocity after the 2004 Mw 6.6 mid-Niigata earthquake, Japan, observed with passive image interferometry. Journal of Geophysical Research, 114, B06305. doi:10.1029/2008JB005869.

    Article  Google Scholar 

  • Wu, C., Delorey, A., Brenguier, F., Hadziioannou, C., Daub, E. G., & Johnson, P. (2016). Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California. Geophysical Research Letters, 43, 6129–6136. doi:10.1002/2016GL069145.

    Article  Google Scholar 

  • Wu, C., Peng, Z., & Assimaki, D. (2009). Temporal changes in site response associated with the strong ground motion of the 2004 Mw 6.6 Mid-Niigata earthquake sequences in Japan. Bulletin of the Seismological Society of America, 99, 3487–3495. doi:10.1785/0120090108.

    Article  Google Scholar 

  • Yagoda-Biran, G., & Anderson, J. G. (2015). Investigation of the ground-motion variability associated with site response for sites with VS30 over 500 m/s. Bulletin of the Seismological Society of America, 105, 1011–1028. doi:10.1785/0120140224.

    Article  Google Scholar 

  • Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., & Fukao, Y. (2003). Long-term observation of in situ seismic velocity and attenuation. Journal of Geophysical Research, 108(B6), 2317. doi:10.1029/2002JB002005.

    Article  Google Scholar 

  • Yukutake, Y., Ueno, T., & Miyaoka, K. (2016). Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records. Progress in Earth and Planetary Science., 3, 29. doi:10.1186/s40645-016-0106-5.

    Article  Google Scholar 

  • Zaccarelli, L., Shapiro, N. M., Faenza, L., Soldati, G., & Michelini, A. (2011). Variations of crustal elastic properties during the 2009 L’Aquila earthquake inferred from cross-correlations of ambient seismic noise. Geophysical Research Letters, 38, L24304. doi:10.1029/2011GL049750.

    Article  Google Scholar 

  • Zhao, P., & Peng, Z. (2009). Depth extent of damage zones around the central Calaveras fault from waveform analysis of repeating earthquakes. Geophysical Journal International, 179, 1817–1830. doi:10.1111/j.1365-246X.2009.04385.x.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Nevada Seismological Laboratory for their conscientious work to incorporate data of many additional portable stations into the database during the time of the Mogul earthquake sequence of 2008, when the laboratory’s resources were already strained in processing and locating thousands of small events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. von Seggern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Seggern, D.H., Anderson, J.G. Velocity Change in the Zone of a Moderate Mw 5.0 Earthquake Revealed by Autocorrelations of Ambient Noise and by Event Spectra. Pure Appl. Geophys. 174, 1923–1935 (2017). https://doi.org/10.1007/s00024-017-1521-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1521-2

Keywords

Navigation