Skip to main content
Log in

Solid-state MAS NMR investigations for pentavalent cation-replaced pollucite compounds with a negative thermal expansion coefficient

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pollucite compounds with an aluminosilicate structure, V-replaced pollucite, Cs0.7V0.1Al0.8Si2.1O6 (CVAS), P-replaced pollucite, Cs0.7P0.1Al0.8Si2.1O6 (CPAS), and Nb-replaced pollucite, Cs0.7Nb0.1Al0.8Si2.1O6 (CNbAS), were synthesized by a multistep heat treatment of 550–1200 °C. CVAS exhibited the superior thermal expansion with thermal expansion coefficients of 0.9 × 10−6 °C−1 (30–500 °C), −0.9 × 10−6 °C−1 (30–150 °C), and −0.4 × 10−6 °C−1 (30–100 °C). Solid-state 29Si MAS NMR spectroscopy clarified that the number of Si–O–Si bonds of tetrahedra in the framework of CVAS was larger than those of CPAS and CNbAS. The chemical shift for peaks of the 29Si MAS NMR spectrum of CVAS was larger than those of CPAS and CNbAS, suggesting that the bond angle of tetrahedra was enlarged by the V replacement. Solid-state 27Al MAS NMR spectroscopy implied that CVAS had a small amount of sixfold coordinated Al species, which resulted in an increase in the number of Si–O–Si bonds of tetrahedra of CVAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Yanase I, Takahashi T, Tomizawa M, Hidehiko H. Cs-leaching behavior of Cs-titanosilicate in NaCl solution. Mater Lett. 2011;65:314–6.

    Article  CAS  Google Scholar 

  2. Hess NJ, Espinosa FJ, Conradson SD, Weber WJ. Beta radiation effects in 137Cs-substituted pollucite. J Nucl Mater. 2000;281:22–33.

    Article  CAS  Google Scholar 

  3. Beall GH, Ritter HL. Nucleation and crystallization in glasses. Adv Ceram. 1982;4:301–12.

  4. MacLaren I, Cirre J, Ponton CB. Hydrothermal synthesis of pollucite (CsAlSi2O6) powders. J Am Ceram Soc. 1999;82:3242–4.

    Article  CAS  Google Scholar 

  5. Mazza D, Borlera ML. On the substitution of Fe and B for Al in the pollucite (CsAlSi2O6) structure. J Eur Ceram Soc. 1997;17:1767–72.

    Article  CAS  Google Scholar 

  6. Taylor D, Henderson CMB. The thermal expansion of the leucite group of minerals. Am Mineral. 1968;53:1476–89.

    CAS  Google Scholar 

  7. Beger RM. The crystal structure and chemical composition of pollucite. Z Kristallogr. 1969;129:280–302.

    Article  CAS  Google Scholar 

  8. Richerson DW, Hummel FA. Synthesis and thermal expansion of polycrystalline cesium minerals. J Am Ceram Soc. 1972;55:269–73.

    Article  CAS  Google Scholar 

  9. Yanase I, Kobayashi H, Mitamura T. Thermal expansion property of synthetic cubic leucite-type compounds. J Ceram Soc Jpn. 2000;108:26–31.

    Article  CAS  Google Scholar 

  10. Yanase I, Tamai S, Hidehiko K. Sintering of pollucite using amorphous powder and its low thermal expansion property. J Am Ceram Soc. 2003;86:1360–4.

    Article  CAS  Google Scholar 

  11. Tamai S, Yanase I, Kobayashi H. Synthesis of cubic Cs-deficient pollucite and its low thermal expansion property. J Ceram Soc Jpn. 2004;112:1358–63.

    Google Scholar 

  12. Kobayashi H, Sumino S, Tamai S, Yanase I. Phase transition and lattice thermal expansion of Cs-deficient pollucite, Cs1-XAl1-XSi2+XO6 (X ≦ 0.25), compounds. J Am Ceram Soc. 2006;89:3157–61.

    Article  CAS  Google Scholar 

  13. Yanase I, Miyashita N, Kobayashi H, Noguchi F, Mitamura T. Synthesis and thermal expansion property of cubic Cs2MSi5O12 (M = Cd, Ni, Zn) powders. J Ceram Soc Jpn. 1998;106:1099–103.

    Article  CAS  Google Scholar 

  14. Yanase I, Kobayashi H, Mitamura T. Synthesis of cubic Cs2FeSi5O12 powder in Ar atmosphere and its thermal expansion property. J Ceram Soc Jpn. 2000;108:677–80.

    Article  CAS  Google Scholar 

  15. Yanase I, Kobayashi H, Mitamura T. Thermal property and phase transition of the synthesized new cubic leucite-type compounds. J Therm Anal Calor. 1999;57:695–705.

    Article  CAS  Google Scholar 

  16. Yanase I, Tamai S, Kobayashi H. Sintering of pollucite using amorphous powder and its low thermal expansion property. J Ceram Soc Jpn. 2003;111:533–6.

    Article  CAS  Google Scholar 

  17. Yanase I, Konakawa J, Kobayashi H. Influence of Cesium nitrate and heating rate on densification and microstructure of Cs-deficient pollucite sintered body. J Am Ceram Soc. 2006;89:184–8.

    Article  CAS  Google Scholar 

  18. Nuermberg RB, Faller CA, Montedo ORK. Crystallization kinetics and thermal and electrical properties of β-spodumene/cordierite glass-ceramics. J. Therm Anal Calorim. 2017;127:355–62.

    Article  Google Scholar 

  19. Yuruyen S, Toplan N, Yildiz K, Toplan HO. The non-isothermal kinetics of cordierite formation in mechanically activated talc-kaolinite-alumina ceramics system. J. Therm Anal Calorim. 2016;125:803–8.

    Article  CAS  Google Scholar 

  20. Oliveira JM, Correia RN, Fernandes MH, Rocha J. Influence of the CaO/MgO ratio on the structure of phase-separated glasses: a solid state 29Si and 31P MAS NMR study. J. Non-cryst Solids. 2000;265:221–9.

    Article  CAS  Google Scholar 

  21. Sazama P, Wichtelova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O. FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater. 2011;143:87–96.

  22. Yang J, Deng F, Zhang M, Luo Q, Ye C. W/HZSM-5 catalyst for methane dehydroaromatization: a multinuclear MAS NMR study. J Molec Catal A Chem. 2003;202:239–46.

    Article  CAS  Google Scholar 

  23. Cody GD, Mysen B, Szabo GS, Tosseil JA. Silicate-phosphate interactions in silicate glasses and melts: I. A multinuclear (27Al, 29Si, 31P) MAS NMR and ab initio chemical shielding (31P) study of phosphorous speciation in silicate glasses. Geochim Cosmochim Acta. 2001;65:2395–411.

    Article  CAS  Google Scholar 

  24. Hughes RW, Weller MT. The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction and 29Si MAS NMR. Microporous Mesoporous Mater. 2002;51:189–96.

    Article  CAS  Google Scholar 

  25. Dove MT. The use of 29Si MAS NMR and Monte Carlo methods in the study of Al/Si ordering in silicates. Geoderma. 1997;80:353–68.

    Article  CAS  Google Scholar 

  26. Yanase I, Saito Y, Kobayashi H. Synthesis and thermal expansion of (V, P, Nb)-replaced pollucite. Ceram Int. 2012;38:811–5.

    Article  CAS  Google Scholar 

  27. Evans el al JSO. Negative thermal expansion materials. Phys B. 1998;241–243:311–6.

  28. Moreno OG, et al. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scrip Mater. 2010;63:170–3.

    Article  Google Scholar 

  29. Mozgawa W, Sitarz M, Rokita M. Spectroscopic studies of different aluminosilicate structures. J Mol Struct. 1999;511–12:251–7.

    Article  Google Scholar 

  30. Mozgawa W. The relation between structure and vibrational spectra of natural zeolites. J Mol Struct. 2001;596:129–37.

    Article  CAS  Google Scholar 

  31. Rokita M, Mozgawa W, Handke M. The influence of Na+ and Ca2+ ions on the SiO2-AlPO4 materials structure—IR and Raman studies. J Mol Struct. 2001;596:171–8.

    Article  CAS  Google Scholar 

  32. Mozgawa W, Sitarz M. Vibrational spectra of aluminosilicate ring structures. J Mol Struct. 2002;614:273–9.

    Article  CAS  Google Scholar 

  33. Fyfe CA, Feng Y, Grondey H, Kokotaiko GT, Gies H. One-dimensional and 2-dimensional high-resolution solid-state NMR-studies of zeolite lattice structures. Chem Rev. 1991;91:1525–43.

    Article  CAS  Google Scholar 

  34. Lippmaa E, Magi M, Samoson A, Tarmak M, Engelhardt G. Investigation of the structure of zeolites by solid-state high-resolution solid-state 29Si NMR. J Am Chem Soc. 1981;103:4992–6.

    Article  CAS  Google Scholar 

  35. Thomas JM, Fyfe CA, Ramdas S, Klinowski J, Gobbi GC. High-resolution 29Si Nuclear Magnetic-resonance spectrum of zeolite ZK-4—its significance in assessing magic-angle-spinning nuclear magnetic-resonance as a structural tool for aluminosilicates. J Phys Chem. 1982;86:3061–4.

    Article  CAS  Google Scholar 

  36. Ramdas S, Klinowski J. A simple correlation between isotropic 29Si-NMR chemical shifts and T-O-T angles in zeolite frameworks. Nature. 1984;308:521–3.

    Article  CAS  Google Scholar 

  37. Kwak JH, Hu JZ, Kim DH, Szanyi J, Peden CHF. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on gamma-Al2O3: Au ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 2007;241:189–94.

    Article  Google Scholar 

  38. Ananthanarayanan A, Kothiyal GP, Maontagne L, Revel B. Synthesis of mesoporous titanium oxide by soft template based approach: characterization and application in dye-sensitized solar cells. J Solid State Chem. 2010;183:1416–22.

    Article  CAS  Google Scholar 

  39. Okada K, Arai H, Kameshima Y, Yasumori A, MacKenzie KJD. Uptake of various cations by amorphous BaAl2Si2O8 prepared by solid-state reaction of kaolin with BaCO3. Mater Lett. 2003;57:3554–9.

    Article  CAS  Google Scholar 

  40. Venkatathri N. Synthesis of AlPO4-31 from nonaqueous systems. Mater Lett. 2003;58:241–4.

    Article  Google Scholar 

  41. Hu JZ, et al. High-field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts. J Catal. 2016;336:85–93.

    Article  CAS  Google Scholar 

  42. Fyfe CA, Wong-Moon KC, Huang Y. 27Al/31P solid-state nmr. structural investigations of AlPO4-5 molecular sieve. Zeolites. 1996;16:50–5.

    Article  CAS  Google Scholar 

  43. Tanaka S, Fukui R, Miyake Y. Synthesis of ordered mesoporous silicoaluminophosphates by using LTA zeolite precursors dissolved under acidic conditions. Mater Lett. 2013;91:259–62.

    Article  Google Scholar 

  44. Guan X, Zhang F, Wu G, Guan N. Synthesis and characterization of a basic molecular sieve: nitrogen-incorporated SAPO-34. Mater Lett. 2006;60:3141–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Yanase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanase, I., Saito, Y. & Kobayashi, H. Solid-state MAS NMR investigations for pentavalent cation-replaced pollucite compounds with a negative thermal expansion coefficient. J Therm Anal Calorim 129, 1271–1276 (2017). https://doi.org/10.1007/s10973-017-6248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6248-x

Keywords

Navigation