Skip to main content
Log in

Concentrations and analysis of health risks of ambient air metallic elements at Longjing site in central Taiwan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The concentrations of particulates and metallic elements that were bound to total suspended particulates in ambient air at Long Cyuan Elementary School (LCYES), Lung Ching Elementary School (LCHES) and Long Shan Primary School (LSPS) sampling sites in the Longjing area were measured. Significant difference tests were conducted at LSPS, LCYES and LCHES sites. Finally, carcinogenic and non-carcinogenic risk values for LSPS, LCYES and LCHES sites in the Longjing district were evaluated. The results show that the most average particulate and metallic element concentrations were highest in October, November, January, February, March, April, August, and September The average particulate and metallic element concentrations at LCHES were higher than at the other sampling sites. The Concentration Scatter Diagrams reveal the absence of significant variation among the LSPS, LCYES and LCHES sampling sites in the Longjing district. Therefore, these sampling sites are inferred to have similar emission sources. The children and adults inhalation carcinogenic risks which referenced US EPA method were all within acceptable ranges. Non-carcinogenic risks revealed that all metallic elements considered herein were harmless to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antonini, J. M. (2003). Health effects of welding. Critical Reviews in Toxicology, 33(1), 61–103.

    Article  CAS  Google Scholar 

  • Antonini, J. M., Taylor, M. D., Zimmer, A. T., & Roberts, J. R. (2004). Pulmonary responses to welding fumes: Role of metal constituents. Journal of Toxicology and Environmental Health, Part A, 67(3), 233–249.

    Article  CAS  Google Scholar 

  • Arditsoglou, A., & Samara, C. (2005). Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere, 59, 669–678.

    Article  CAS  Google Scholar 

  • Chen, R., Zhang, Y., Yang, C., Zhao, Z., Xu, X., & Kan, H. (2013). Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke, 44, 954–960.

    Article  Google Scholar 

  • Choi, E. M., Kim, S. H., Holsen, T. M., & Yi, S. M. (2009). Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution, 157(3), 816–822.

    Article  CAS  Google Scholar 

  • Cocco, P., Rice, C. H., Chen, J. Q., McCawley, M., McLaughlin, J. K., & Dosemeci, M. (2000). Non-malignant respiratory diseases and lung cancer among Chinese workers exposed to silica. Journal of Occupational and Environmental Medicine, 42(6), 639–644.

    Article  CAS  Google Scholar 

  • Donaldson, K., & MacNee, W. (2001). Mini-review: Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). International Journal of Hygiene and Environmental Health, 203, 411–415.

    Article  CAS  Google Scholar 

  • Fang, G., Chang, C., Chu, C., Wu, Y., Fu, P. P., Yang, I., et al. (2003). Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment, 308(1–3), 157–166.

    Article  CAS  Google Scholar 

  • Fang, G. C., Basu, N., Nam, D. H., & Yang, I. L. (2009). Characterization of ambient air particulates and particulate mercury at Sha-Lu, Central Taiwan. Environmental Forensics, 10(4), 277–285.

    Article  CAS  Google Scholar 

  • Fang, G. C., Cheng, M. T., & Chang, C. N. (1997). Monitoring and modeling the mass, heavy metal and ion species dry deposition in central Taiwan. Journal of Environmental Science and Health. Part A, A32(8), 2183–2199.

    CAS  Google Scholar 

  • Fang, G. C., Chiang, H. C., Chen, Y. C., Xiao, Y. F., & Zhuang, Y. J. (2014). Particulates and metallic elements monitoring at two sampling sites (Harbor, Airport) in Taiwan. Environmental Forensics., 15, 296–305.

    Article  CAS  Google Scholar 

  • Fang, G. C., Huang, L., Huang, Y. J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203-204(15), 158–168.

    Article  CAS  Google Scholar 

  • Fang, G. C., Lo, C. T., Zhuang, Y. J., Kuo, Y. C., & Cho, M. H. (2015). Sources of ambient air particulates and Hg(p) pollutants at Freeway, industrial, thermal power plant F.I.T. characteristic sites. Journal of Environmental Earth Sciences, 75, 103. doi:10.1007/s12665-015-5057-4.

  • Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29, 213–239.

    Article  CAS  Google Scholar 

  • Horvath, H. (1995). Size segregated light absorption coefficient of the atmospheric aerosol. Atmospheric Environment, 29(8), 875–883.

    Article  CAS  Google Scholar 

  • Huang, W., Duan, D., Zhang, Y., Cheng, H., & Ran, Y. (2014). Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China. Marine Pollution Bulletin, 85, 720–726.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., et al. (2004). Report: The German view: Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 203, 399–407.

    Article  Google Scholar 

  • Kavuri, N. C., Paul, K. K., & Roy, N. (2015). TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela. Particuology, 20, 124–133.

    Article  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  Google Scholar 

  • Lau, O. W., & Luk, S. F. (2001). Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong. Atmospheric Environment, 35(18), 3113–3120.

    Article  CAS  Google Scholar 

  • Liu, X., Zhai, Y., Zhu, Y., Liu, Y., Chen, H., Li, P., et al. (2015). Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Science of the Total Environment, 517, 215–221.

    Article  CAS  Google Scholar 

  • Ma, Y., Wang, Z., Tan, Y., Xu, S., Kong, S., Wu, G., et al. (2016). Comparison of inorganic chemical compositions of atmospheric TSP, PM10 and PM2.5 in northern and southern Chinese coastal cities. Journal of Environmental Sciences. doi:10.1016/j.jes.2016.05.045.

  • Martins, M. C. H., Fatigati, F. L., Véspoli, T. C., Martins, L. C., Pereira, L. A. A., Martins, M. A., et al. (2004). Research report: Influence of socioeconomic conditions on air pollution adverse health effects in elderly people: An analysis of six regions in São Paulo, Brazil. Journal of Epidemiology and Community Health, 58, 41–46.

    Article  CAS  Google Scholar 

  • Marty, M. A., Siegel, D., Mahmud, A., Servin, A., Yee, S., Zuo, Y. P., et al. (2015). Air toxics hot spots program. Risk assessment guidelines. Guidance manual for preparation of health risk assessments. February 2015.

  • Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298.

    Article  CAS  Google Scholar 

  • Progiou, A. G., & Ziomas, I. C. (2015). Predicting annual average particulate concentration in urban areas. Science of the Total Environment, 532(2015), 353–359.

    Article  CAS  Google Scholar 

  • Raoof, S., & Al-Sahhaf, M. (1992). Study of particulate pollutants in the air of Riyadh by energy dispersive X-ray fluorescence spectrometry. Atmospheric Environment Part B: Urban Atmosphere, 26(3), 421–423.

    Article  Google Scholar 

  • Sharma, R. K., Agrawal, M., Fiona, M., & Marshall, F. M. (2008). Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi city, India. Environmental Monitoring and Assessment, 142(1–3), 269–278.

    Article  CAS  Google Scholar 

  • Sun, Q., Hong, X., & Wold, L. E. (2010). Cardiovascular effects of ambient particulate air pollution exposure. Circulation, 121, 2755–2765.

    Article  Google Scholar 

  • Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    Article  CAS  Google Scholar 

  • US EPA (U.S. Environmental Protection Agency). (1989). Risk assessment guidance for super fund volume I human health evaluation manual (part A). EPA/540/1-89/002 December. http://www.epa.gov/swerrims/riskassessment/ragsa/index.htm.

  • Var, F., Narita, Y., & Tanaka, S. (2000). The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmospheric Environment, 34(17), 2755–2770.

    Article  CAS  Google Scholar 

  • Wong, C. M., Atkinson, R. W., Anderson, H. R., Hedley, A. J., Ma, S., Chau, P. Y., et al. (2002). A tale of two cities: Effects of air pollution on hospital admissions in Hong Kong and London compared. Environmental Health Perspectives, 110, 67–77.

    Article  CAS  Google Scholar 

  • Wongphatarakul, V., Friedlander, S. K., & Pinto, J. P. (1998). A comparative study of PM2.5 ambient aerosol chemical databases. Environmental Science and Technology, 32, 3926.

    Article  CAS  Google Scholar 

  • Wu, S., Yang, D., Wei, H., Wang, B., Huang, J., Li, H., et al. (2015). Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China. Chemosphere., 135, 347–353.

    Article  CAS  Google Scholar 

  • Zhang, J. J. Y., Sun, L., Barrett, O., Bertazzon, S., Underwood, F. E., & Johnson, M. (2015). Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmospheric Environment, 106, 165–177.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Friedlander, S. K. (2000). A comparative study of chemical databases for fine particle chinese aerosols. Environmental Science and Technology, 34, 4687–4698.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Council of the ROC (Taiwan) for financially supporting this work under Project No. 103-2221-E-241 -004 -MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, GC., Chen, YC., Lo, CT. et al. Concentrations and analysis of health risks of ambient air metallic elements at Longjing site in central Taiwan. Environ Geochem Health 40, 461–472 (2018). https://doi.org/10.1007/s10653-017-9933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9933-6

Keywords

Navigation