Skip to main content
Log in

From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Methyl salicylate (MeSA) is a commonly emitted herbivore-induced plant volatile (HIPV) known to attract insect predators in agricultural crops. However, thorough studies on whether MeSA can increase their ecological functioning or their attraction under field conditions are still lacking. Here, we conducted laboratory, greenhouse, and field studies to address the hypothesis that two agriculturally important predatory insects (the ladybeetle Hippodamia convergens Guérin-Méneville and the lacewing Chrysoperla rufilabris Burmeister) respond physiologically and behaviorally to MeSA, which may lead to increased predation and oviposition. In laboratory studies using electro-antennography, we found that male and female H. convergens and C. rufilabris antennae can detect MeSA; however, for both species, female antennae responded more strongly. In greenhouse studies using cages and wind tunnels, H. convergens females were attracted to, and arrested by, MeSA; this attraction increased egg predation. Attraction of C. rufilabris females to MeSA also increased oviposition. In field studies, mark-release-recapture experiments were performed to investigate H. convergens and C. rufilabris attraction to MeSA over various distances in cranberry fields. More H. convergens and C. rufilabris were caught on yellow sticky cards placed close (0–30 m) to the predator release site than at farther distances, regardless of whether the cards were baited with MeSA or not. In conclusion, H. convergens and C. rufilabris adults detected, and were attracted to, MeSA under laboratory and greenhouse conditions, resulting in higher predation and oviposition, but this attraction was not observed under field conditions. These results demonstrate that predator responses to HIPVs can be complex in real agricultural settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich JR, Zhang QH (2016) Chemical ecology of neuroptera. Ann Rev Entomol 61:197–218

    Article  CAS  Google Scholar 

  • Azandémè-Hounmalon GY, Torto B, Fiaboe KKM, Subramanian S, Kreiter S, Martin T (2016) Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes. J Pest Sci 89:137–152

    Article  Google Scholar 

  • Blaauw BR, Jones VP, Nielsen AL (2016) Utilizing immunomarking techniques to track Halyomorpha halys (Hemiptera: Pentatomidae) movement and distribution within a peach orchard. PeerJ 4:e1997

    Article  PubMed  PubMed Central  Google Scholar 

  • Blande JD, Korjus M, Holopainen JK (2010) Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol 30:404–416

    Article  CAS  PubMed  Google Scholar 

  • Braasch J, Wimp GM, Kaplan I (2012) Testing for phytochemical synergism: arthropod community responses to induced plant volatile blends across crops. J Chem Ecol 38:1264–1275

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CF, Souza B (2009) Métodos de criação e produção de crisopídeos. In: Bueno VHP (eds) Controle biológico de pragas: produção massal e controle de qualidade. UFLA, Lavras, pp 77–115.

    Google Scholar 

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    Article  PubMed  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249.

    Article  CAS  Google Scholar 

  • Drukker B, Bruin J, Sabelis MW (2000) Anthocorid predators learn to associate herbivore-induced volatiles with presence or absence of prey. Physiol Entomol 25:260–265.

    Article  CAS  Google Scholar 

  • Fréchette B, Coderre D, Lucas E (2006) Chrysoperla rufilabris (Neuroptera: Chrysopidae) females do not avoid ovipositing in the presence of conspecific eggs. Biol Control 37:354–358

    Article  Google Scholar 

  • Gadino AN, Walton VM, Lee JC (2012a) Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol Control 63:48–55

    Article  CAS  Google Scholar 

  • Gadino AN, Walton VM, Lee JC (2012b) Olfactory response of Typhlodromus pyri (Acari: Phytoseiidae) to synthetic methyl salicylate in laboratory bioassays. J Appl Entomol 136:476–480

    Article  CAS  Google Scholar 

  • Hagler JR, Jones VP (2010) A protein-based approach to mark arthropods for mark-capture type research. Entomol Exp Appl 135:177–192.

    Article  CAS  Google Scholar 

  • Hagler JR, Baker PB, Marchosky R, Machtley SA, Bellamy DE (2009) Methods to mark termites with protein for mark-release-recapture and mark-capture type studies. Insect Soc 56:213–220

    Article  Google Scholar 

  • Hagler JR, Naranjo SE, Machtley SA, Blackmer F (2014) Development of a standardized protein immunomarking protocol for insect mark-capture dispersal research. J Appl Entomol 138:772–782

    Article  CAS  Google Scholar 

  • Hegde M, Oliveira JN, Costa JG, Bleicher E, Santana EG, Bruce JA, Caulfield J, Dewhirst SY, Woodcock CM, Pickett JA, Birkett MA (2011) Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. J Chem Ecol 37:741–750

    Article  CAS  PubMed  Google Scholar 

  • James DG (2003) Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 29:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • James D (2006) Methyl salicylate is a field attractant for the goldeneyed lacewing, Chrysopa oculata. Biocontrol Sci Technol 16:107–110.

    Article  Google Scholar 

  • James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. Biocontrol 50:871–880

    Article  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    Article  CAS  PubMed  Google Scholar 

  • Jones VP, Steffan SA, Wiman NG, Horton DR, Miliczky E, Zhang QH, Baker CC (2011) Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol Control 56:98–105

    Article  Google Scholar 

  • Kelly JL, Hagler JR, Kaplan I (2014) Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. Biol Control 71:70–77

    Article  CAS  Google Scholar 

  • Kindlmann P, Dixon AFG (1993) Optimal foraging in ladybird beetles (Coleoptera, Coccinellidae) and its consequences for their use in biological control. Eur J Entomol 90:443–450.

    Google Scholar 

  • Kunkel BA, Cottrell TE (2007) Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan. Environ Entomol 36:577–583

    Article  PubMed  Google Scholar 

  • Lee JC (2010) Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ Entomol 39:653–660

    Article  CAS  PubMed  Google Scholar 

  • Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124

    Article  PubMed  Google Scholar 

  • Melo Machado RC, Sant’Ana J, Blassioli-Moraes MC, Laumann RA, Borges M (2014) Herbivory-induced plant volatiles from Oryza sativa and their influence on chemotaxis behaviour of Tibraca limbativentris stal. (Hemiptera: Pentatomidae) and egg parasitoids. Bull Entomol Res 104:347–356

    Article  CAS  PubMed  Google Scholar 

  • Musser FR, Shelton AM (2003) Predation of Ostrinia nubilalis (Lepidoptera: Crambidae) eggs in sweet corn by generalist predators and the impact of alternative foods. Environ Entomol 32:1131–1138

    Article  Google Scholar 

  • Obrycki JJ, Harwood JD, Kring TJ, O’Neil RJ (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biol Control 51:244–254

    Article  Google Scholar 

  • Petersen MK, Hunter MS (2002) Ovipositional preference and larval-early adult performance of two generalist lacewing predators of aphids in pecans. Biol Control 25:101–109

    Article  Google Scholar 

  • Petersson J, Pickett JA, Pye BJ, Quiroz A, Smart LE, Wadhams LJ, Woodcock CM (1994) Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20:2565–2574

    Article  Google Scholar 

  • Principi MM, Canard M (1984) Feeding habits. In: Canard M, Séméria Y, New TR (eds) Biology of Chrysopidae. Junk Publishers, The Hague, pp 76–92

    Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statiscal Computing. Vienna

  • Richman DB, Hemenway RC Jr, Whitcomb WH (1980) Field cage evaluation of predators of the soybean looper, Pseudoplusia includens (Lepidoptera: Noctuidae). Environ Entomol 9:315–317

    Article  Google Scholar 

  • Rodriguez-Saona C, Poland TM, Miller JR, Stelinski LL, Grant GG, de Groot P, Buchan L, MacDonald L (2006) Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology 16:75–86

    Article  CAS  Google Scholar 

  • Rodriguez-Saona C, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35:163–175

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011a) Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol Control 59:294–303

    Article  CAS  Google Scholar 

  • Rodriguez-Saona C, Parra L, Quiroz A, Isaacs R (2011b) Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Ann Bot 107:1377–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Salamanca J, Pareja M, Rodriguez-Saona C, Resende ALS, Souza B (2015) Behavioral responses of adult lacewings, Chrysoperla externa, to a rose-aphid-coriander complex. Biol Control 80:103–112

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An Analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Stelinski LL, Gut LJ, Miller JR (2003) Concentration of air-borne pheromone required for long-lasting peripheral adaptation in the obliquebanded leafroller, Choristoneura rosaceana. Physiol Entomol 28:97–107

    Article  CAS  Google Scholar 

  • Sznajder B, Sabelis MW, Egas M (2010) Response of predatory mites to a herbivore-induced plant volatile: Genetic variation for context-dependent behaviour. J Chem Ecol 36:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wang G, Cui LL, Dong J, Francis F, Liu Y, Tooker J (2011) Combining intercropping with semiochemical releases: Optimization of alternative control of Sitobion avenae in wheat crops in china. Entomol Exp Appl 140:189–195.

    Article  Google Scholar 

  • Weber DC, Lundgren JG (2009) Assessing the trophic ecology of the Coccinellidae: their roles as predators and as prey. Biol Control 51:199–214

    Article  Google Scholar 

  • Woods JL, James DG, Lee JC, Gent DH (2011) Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Exp Appl Acarol 55:401–416

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Cai X, Bian L, Luo Z, Xin Z, Chen Z (2015) Electrophysiological and behavioral responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to plant volatiles. Environ Entomol 44:1425–1433

    Article  PubMed  Google Scholar 

  • Zhu J, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Obrycki JJ, Ochieng SA, Baker TC, Pickett JA, Smiley D (2005) Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92:277–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brett Blaauw and Robert Holdcraft for assistance with the ELISA tests. We also thank Diego Fraga, Kris Dahl, Charles Corris, Gabrielle Pintauro, Manuel Chacón-Fuentes, Mara Schiffhauer, Mike Scullion, Andrew Lux, Caryn Michel, Nakorn Pradit, Andrea Wanumen, and Fernando Sanchez for their help in the field. Thanks to Drs. Elvira de Lange, Maria Fernanda Peñaflor, Rosangela Marucci, Mauricio Simões Bento, Diego Felisbino Fraga, and two anonymous reviewers for providing helpful editorial comments on an earlier draft. Thanks to Pine Island Cranberry Co. Inc. and Pine Barrens Native Fruits, LLC for providing cranberry fields for this study. Funding for this work was provided by a postgraduate grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to J.S., and hatch funds (project # NJ08192) to C.R-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordano Salamanca.

Additional information

Communicated by as Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamanca, J., Souza, B., Lundgren, J.G. et al. From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51–63 (2017). https://doi.org/10.1007/s00049-017-0230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0230-8

Keywords

Navigation