Skip to main content

Advertisement

Log in

Potential distribution of the invasive loblolly pine mealybug, Oracella acuta (Hemiptera: Pseudococcidae), in Asia under future climate change scenarios

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Oracella acuta is a significant invasive insect pest in China, which has already caused severe damage to host pines. It is expected that this pest may invade other regions of Asia. This research explores the projected effects of climate change on the future distribution of O. acuta in Asia. To anticipate threats and prioritize management strategies to control O. acuta, we examined the potential distribution of O. acuta under current and future climate scenarios based on CLIMEX models. These models were calibrated using the physiological tolerance thresholds for this species, and A1B and A2 scenarios for 2030 and 2070 under a CSIRO-Mk 3.0 Global Climate Model were used to predict future distribution. The results suggest that O. acuta has the ability to establish in most countries of Southern Asia, such as China, Vietnam, Laos, Myanmar, Bhutan, Bangladesh, Philippines, Sri Lanka, and India. Both scenarios showed that the species is predicted to expand its range northwards but retract in the southern edge. The A1B scenario projected a wider spread of O. acuta than the A2 scenario. Despite the uncertainties inherent to climate models and that it was not possible to integrate all parameters into the model and some assumptions had to be made, our results indicate that heat and drought stress may have significant impacts on the species distribution, especially in southern regions of Asia in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DP, Sturtevant BR (2011) Pattern analysis of eastern spruce budworm Choristoneura fumiferana dispersal. Ecography 34:488–497

    Article  Google Scholar 

  • Anderson KL, Deveson TE, Sallam N, Congdon BC (2010) Wind-assisted migration potential of the island sugarcane planthopper Eumetopina flavipes (Hemiptera: Delphacidae): implications for managing incursions across an Australian quarantine frontline. J Appl Ecol 47:1310–1319

    Article  Google Scholar 

  • Barbehenn RV, Karowe DN, Chen Z (2004) Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140:96–103

    Article  Google Scholar 

  • Battisti A (2008) Forests and climate change—lessons from insects. iForest 1:1–5

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Chang Biol 19:3740–3748

    Article  Google Scholar 

  • Chen FJ, Wu G, Ge F, Parajulee MN, Shrestha RB (2005) Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol Exp Appl 115:341–350

    Article  Google Scholar 

  • Chen LC, Li X, Zhang Q, Fan H (2009) Biological characteristics and control of Oracella acuta. Hunan For Sci 36:1–3 (in Chinese with an English abstract)

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  Google Scholar 

  • Clarke SR, DeBarr GL, Berisford CW (1990) Life history of Oracella acuta (Homoptera: Pseudococcidae) in loblolly pine seed orchards in Georgia. Environ Entomol 19:99–103

    Article  Google Scholar 

  • Clarke SR, Negron JF, Debarr GL (1992) Effects of four pyrethroids on scale insect (Homoptera) populations and their natural enemies in loblolly and shortleaf pine seed orchards. J Econ Entomol 85:1246–1252

    Article  Google Scholar 

  • Clarke SR, Yu HB, Chen MR, DeBarr GL, Sun JH (2010) Classical biological control program for the mealybug Oracella acuta in Guangdong Province, China. Insect Sci 17:129–139

    Article  Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  Google Scholar 

  • Delava E, Allemand R, Léger L, Fleury F, Gibert P (2014) The rapid northward shift of the range margin of a Mediterranean parasitoid insect (Hymenoptera) associated with regional climate warming. J Biogeogr 41:1379–1389

    Article  Google Scholar 

  • Domșa C, Sándor AD, Mihalca AD (2016) Climate change and species distribution: possible scenarios for thermophilic ticks in Romania. Geospat Health 11:151–156

    Google Scholar 

  • Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and night-time temperatures. Geophys Res Lett 39:L14707. doi:10.1029/2012GL052459

    Article  Google Scholar 

  • ESRI (2008) ArcGIS software version 9.3. Environment Systems Research Institute, Redlands

    Google Scholar 

  • Global Invasive Species Database (GISD) (2007) http://www.issg.org

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hill MP, Bertelsmeier C, Clusella-Trullas S, Garnas J, Robertson MP, Terblanche JS (2016) Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol Invasions 18:1105–1119

    Article  Google Scholar 

  • Hof AR, Svahlin A (2016) The potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Scand J For Res 31:29–39

    Article  Google Scholar 

  • Huang DC (2000) Study on GIS-based prediction and forecast of the mealybug, Oracella acuta (Lobdell). Dissertation, South China Agriculture University (in Chinese with an English abstract)

  • Huang DC, Haack RA, Zhang RZ (2011) Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLoS One 6:e24733. doi:10.1371/journal.pone.0024733

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen ZL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 2–18

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral apsects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 59–60

    Google Scholar 

  • Johnson WT, Lyon HH (1988) Insects that feed on trees and shrubs, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Jones TH, Thompson LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–443

    Article  Google Scholar 

  • Jones PD, Trenberth KE, Ambenje PG, Bojariu R, Easterling DR, Klein Tank AMG, Parker DE, Renwick JA, Rahimzadeh F, Rusticucci MM, Soden BJ, Zhai PM (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen ZL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Ju RT, Gao L, Zhou XH, Li B (2013) Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China. PLoS One 8:e54372. doi:10.1371/journal.pone.0054372

    Article  Google Scholar 

  • Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol 167:207–218

    Article  Google Scholar 

  • Kriticos DJ, Watt MS, Potter KJB, Manning LK, Alexander NS, Tallent-Halsell N (2011) Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii. Weed Res 51:85–96

    Article  Google Scholar 

  • Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3:53–64

  • Kumar S, Graham J, West AM, Evangelista PH (2014) Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Comput Electron Agric 103:55–62

    Article  Google Scholar 

  • Kumar S, Neven LG, Zhu HY, Zhang RZ (2015) Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J Econ Entomol 108:1708–1719

    Article  Google Scholar 

  • Lander TA, Klein EK, Oddou-Muratorio S, Candau JN, Gidoin C, Chalon A, Roig A, Fallour D, Auger-Rozenberg MA, Boivin T (2014) Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data. Ecol Evol 4:4609–4625

    Article  Google Scholar 

  • Liu YZ, Reich PB, Li GY, Sun SC (2011) Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology 92:1201–1207

    Article  Google Scholar 

  • López-Tirado J, Hidalgo PJ (2016) Predictive modelling of climax oak trees in southern Spain: insights in a scenario of global change. Plant Ecol 217:451–463

    Article  Google Scholar 

  • Masner L, Sun JH, Clarke SR, Berisford CW (2004) Description of Allotropa oracellae (Hymenoptera: Platygastridae), a parasitoid of Oracella acuta (Heteroptera: Pseudococcidae). Fla Entomol 87:600–602

    Article  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  • Menéndez R (2007) How are insects responding to global warming? Tijdschr Entomol 150:355–365

    Google Scholar 

  • Miller DR (2005) Selected scale insect groups (Hemiptera: Coccoidea) in the southern region of the United States. Fla Entomol 88:482–501

    Article  Google Scholar 

  • Monier E, Gao X (2015) Climate change impacts on extreme events in the United States: an uncertainty analysis. Clim Chang 131:67–81

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110:669–696

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC (2013) Beyond climate change attribution in conservation and ecological research. Ecol Lett 16:58–71

    Article  Google Scholar 

  • Pelini SL, Dzurisin JDK, Prior KM, Williams CM, Marsico TD, Sinclair BJ, Hellmann JJ (2009) Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc Natl Acad Sci 106:11160–11165

    Article  Google Scholar 

  • Qiu JX (2015) A global synthesis of the effects of biological invasions on greenhouse gas emissions. Glob Ecol Biogeogr 24:1351–1362

    Article  Google Scholar 

  • Régnière J, St-Amant R, Duval P (2012) Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol Invasions 14:1571–1586

    Article  Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142

    Article  Google Scholar 

  • Robinet C, Baier P, Pennerstorfer J, Schopf A, Roques A (2007) Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Glob Ecol Biogeogr 16:460–471

    Article  Google Scholar 

  • Robinet C, Imbert CE, Rousselet J, Sauvard D, Garcia J, Goussard F, Roques A (2012) Human-mediated long-distance jumps of the pine processionary moth in Europe. Biol Invasions 14:1557–1569

    Article  Google Scholar 

  • Robinet C, Rousselet J, Roques A (2014) Potential spread of the pine processionary moth in France: preliminary results from a simulation model and future challenges. Ann For Sci 71:149–160

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624

    Article  Google Scholar 

  • Sánchez-Guillén RA, Munoz J, Hafernik J, Tierney M, Rodriguez-Tapia G, Córdoba-Aguilar A (2014) Hybridization rate and climate change: are endangered species at risk? J Insect Conserv 18:295–305

    Article  Google Scholar 

  • Scherber C, Gladbach DJ, Stevnbak K, Karsten RJ, Schmidt IK, Michelsen A, Albert KR, Larsen KS, Mikkelsen TN, Beier C, Christensen S (2013) Multi-factor climate change effects on insect herbivore performance. Ecol Evol 3:1449–1460

    Article  Google Scholar 

  • Sentis A, Hemptinne JL, Brodeur J (2013) Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Glob Chang Biol 19:833–842

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  Google Scholar 

  • Sridhar V, Verghese A, Vinesh LS, Jayashankar M, Jayanthi PDK (2014) CLIMEX simulated predictions of Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) geographical distribution under climate change situations in India. Curr Sci 106:1702–1710

    Google Scholar 

  • Sun JH, DeBarr GL, Liu TX, Berisford CW, Clarke SR (1996) An unwelcome guest in China: a pine-feeding mealybug. J For 94:27–32

    Google Scholar 

  • Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett N, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE (2015) Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett 18:944–953

    Article  Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. J Biogeogr 30:805–816

    Article  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerized system for matching climates in ecology. Agr Ecosyst Environ 13:281–299

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bottomley W (1991) From CLIMEX to PESKY, a generic expert system for pest risk assessment. EPPO Bull 21:595–608

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bottomley W, Bourne A (2004) CLIMEX version 2. User’s guide. Hearne Scientific Software Pty Ltd., Melbourne

    Google Scholar 

  • Talavera G, Espadaler X, Vila R (2015) Discovered just before extinction? The first endemic ant from the Balearic Islands (Lasius balearicus sp. nov.) is endangered by climate change. J Biogeogr 42:589–601

    Article  Google Scholar 

  • Tang C, Huang DC (2004) Effects of rainfall on the first generation of Oracella acuta’s nymph. J Zhongkai Univ Agric Eng 16:38–41 (in Chinese)

    Google Scholar 

  • Tang C, Tong XL, Huang DC, Liu YB, He LX (2000) Effects of constant temperatures on the experimental population of Oracella acuta. J South China Agric Univ 21:36–39 (in Chinese with an English abstract)

    Google Scholar 

  • Tang C, Huang DC, Tong XL, Huang Z (2001) Effects of alternate temperatures on the experimental population of Oracella acuta. J South China Agric Univ 22:46–48 (in Chinese with an English abstract)

    Google Scholar 

  • Taylor S, Kumar L (2013) Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. J Environ Manage 114:414–422

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (2010) http://www.ars.usda.gov

  • Wang XW, Ji LZ, Zhang QH, Liu Y, Wang GQ (2009) Effects of elevated CO2 on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae. J Appl Entomol 133:47–57

    Article  Google Scholar 

  • Webber BL, Yates CJ, Le Maitre DC, Scott JK, Kriticos DJ, Ota N, McNeill A, Le Roux JJ, Midgley GF (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000

    Article  Google Scholar 

  • Williams RS, Lincoln DE, Thomas RB (1994) Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia 98:64–71

    Article  Google Scholar 

  • Xu JX, Ding KJ (1992) A preliminary study on biology of Oracella acuta. Guangdong For Sci Technol 4:22–24 (in Chinese)

    Google Scholar 

  • Xu SD, Huang MJ, Tan DL, Zhang JQ, Zheng CL, Yi JY (1994) Study on Oracella acuta dispersal. For Pest Dis 2:16–17

    Google Scholar 

  • Xu JX, Yu HB, Fang TS (1996) A study on effective accumulated temperature for development of Oracella acuta and forecasting of domestic spread scope. Guangdong For Sci Technol 12:19–24 (in Chinese with an English abstract)

    Google Scholar 

  • Xu JX, Yu HB, Fang TS, Huang MJ (2002) A study of biology characteristics and the outbreak of pine mealybug Oracella acuta. Guangdong For Sci Technol 18:1–6 (in Chinese with an English abstract)

    Google Scholar 

  • Yin J, Sun YC, Wu G, Ge F (2010) Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 136:12–20

    Article  Google Scholar 

  • You SJ, Liu JF, Huang DC, Ke FS, Vasseur L, Gurr G, Clarke SR, Sun JH, Wu KM, You MS (2013) A review of the mealybug Oracella acuta: invasion and management in China and potential incursions into other countries. For Ecol Manag 305:96–102

    Article  Google Scholar 

  • Yukawa J, Kiritani K, Kawasawa T, Higashiura Y, Sawamura N, Nakada K, Gyotoku N, Tanaka A, Kamitan S, Matsuo K, Yamauchi S, Takematsu Y (2009) Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl Entomol Zool 44:429–437

    Article  Google Scholar 

  • Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One 6:e14806. doi:10.1371/journal.pone.0014806

    Article  Google Scholar 

  • Zhang XJ, Li YZ, Su X, Lu CC (1996) Effect of loblolly pine mealybug on slash pine growth. J South China Agric Univ 18:40–45 (in Chinese with an English abstract)

    Google Scholar 

  • Zhang Y, Shi J, Luo Y (2010) Slash pine mealybug Oracella acuta suitability risk assessment and control plans. In: Wan FH, Peng DL, Wang R (eds) Biological invasions: risk analysis and early prevention. Science Publishing House, Beijing, pp 213–221 (in Chinese with an English abstract)

    Google Scholar 

  • Zhou CQ, Liu LP, Chen HD, Wen RZ, Zhou HY, Li XY (2003) The population dynamics of the loblolly pine mealybug Oracella acuta (Lobdell) and environmental factors. J Zhongshan Univ 42:64–69 (in Chinese with an English abstract)

    Google Scholar 

Download references

Acknowledgments

We thank David Perovic for his feedback on a previous version of the manuscript and helpful suggestion on graphs. This work was supported by an Agro-scientific Research Project in the Public Interest (200903034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsheng You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Vasseur, L. & You, M. Potential distribution of the invasive loblolly pine mealybug, Oracella acuta (Hemiptera: Pseudococcidae), in Asia under future climate change scenarios. Climatic Change 141, 719–732 (2017). https://doi.org/10.1007/s10584-017-1917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1917-0

Keywords

Navigation