Skip to main content

Advertisement

Log in

Climate change effects on Antarctic benthos: a spatially explicit model approach

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The Antarctic Peninsula is one of the regions on the Earth with the clearest evidence of recent and fast air warming. This air temperature rise has caused massive glacier retreat leading to an increased influx of glacier meltwater which entails hydrological changes in coastal waters, increasing sediment input and ice-scouring impact regime. It has been hypothesized that an increase of sediment load due to glacier retreat resulted in a remarkable benthic community shift in Potter Cove, a small inlet of the South Shetland Islands. In order to test this hypothesis, we developed an explicit spatial model to explore the link between sedimentation and ice-scouring increase upon four of the most conspicuous benthic species. This is a valuable novel approach since disturbances are strongly dependent of the space. The model takes into account sediment and population dynamics with Lotka-Volterra competition, a sediment-dependent mortality term and a randomized ice-scouring biomass removal. With the developed algorithm, and using a MATLAB environment, numerical simulations for scenarios with different sedimentation and ice-impact rates were undertaken in order to evaluate the effect of this phenomenon on biological dynamics. Comparing simulation results with biological data, the model not only recreates the spatial community distribution pattern but also seems to be able to recreate the shifts in abundance under sedimentation enhancement, pointing out its importance as a structuring factor of polar benthic communities. Considering the challenges of Antarctic field work, this model represents a powerful tool for assessing, understanding, and predicting the effects of climate change on threatened Antarctic coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes DKA (2016) Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob Chang Biol. doi:10.1111/gcb.13523

    Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc of LondB: Biol Sci 362(1477):11–38. doi:10.1098/rstb.2006.1951

    Article  Google Scholar 

  • Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163. doi:10.3354/cr00760

    Article  Google Scholar 

  • Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 1:365–368. doi:10.1038/nclimate1232

    Article  Google Scholar 

  • Barnes DKA, Fenton M, Cordingley A (2014) Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Curr Biol 24:R553–4. doi:10.1016/j.cub.2014.04.040

    Article  Google Scholar 

  • Bers AV, Momo F, Schloss IR, Abele D (2012) Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response. Clim Change 116:789–803. doi:10.1007/s10584-012-0523-4

    Article  Google Scholar 

  • Boyd PW, Lennartz ST, Glover DM, Doney SC (2014) Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat Clim Chang 5:71–79. doi:10.1038/nclimate2441

    Article  Google Scholar 

  • Brown KM, Fraser KPP, Barnes DKA, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141(1):121–129. doi:10.1007/s00442-004-1648-6

    Article  Google Scholar 

  • Burden RL, Faires JD (2010) Numerical analysis, 9 edn. Brooks Cole

  • Carney D, Oliver S, Armstrong C (1999) Sedimentation and composition of wall communities in Alaskan fjords. Polar Biol 22(1):38–49

    Article  Google Scholar 

  • Clarke A, Aronson RB, Crame JA et al (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568. doi:10.1017/S0954102004002329

    Article  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–4. doi:10.1126/science.1104235

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, Devries AL (1969) Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science 163(3864):273–274

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Mongr 44(1):105–128. doi:10.2307/1942321

    Article  Google Scholar 

  • Dayton PK, Hammerstrom K, Jarrell S et al (2016a) Unusual coastal flood impacts in Salmon Valley, McMurdo Sound, Antarctica. Antarct Sci 28(4):269–275. doi:10.1017/S0954102016000171

    Article  Google Scholar 

  • Dayton PK, Jarrell S, Kim S et al (2016b) Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. J Exp Mar Biol Ecol 482:38–55

    Article  Google Scholar 

  • Deregibus D, Quartino ML, Campana GL, Momo FR (2016) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39:153–166. doi:10.1007/s00300-015-1679-y

    Article  Google Scholar 

  • Di Rienzo JA, Balzarini M, Casanoves F et al (2016) InfoStat version 2016. http://www.infostat.com.ar/

  • Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc Natl Acad Sci U S A 99:1790–5. doi:10.1073/pnas.032206999

    Article  Google Scholar 

  • Douglas J, Dupont T, Ewing RE (1979) Incomplete iteration for time-stepping a Galerkin method for a Quasilinear parabolic problem. SIAM J Numer Anal 16:503–522. doi:10.1137/0716039

    Article  Google Scholar 

  • Fillinger L, Janussen D, Lundälv T, Love S (2013) Report rapid glass sponge expansion after climate-induced antarctic ice shelf collapse. Curr Biol 23(14):1330–1334. doi:10.1016/j.cub.2013.05.051

    Article  Google Scholar 

  • Gerdes D, Hilbig B, Montiel A (2003) Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biol 26(5):295–301. doi:10.1007/s00300-003-0484-1

    Google Scholar 

  • Gili J, Arntz WE, Palanques A et al (2006) A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Res II Top Stud Oceanogr 53:1029–1052. doi:10.1016/j.dsr2.2005.10.021

    Article  Google Scholar 

  • Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS One 8:e77917. doi:10.1371/journal.pone.0077917

    Article  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. In Ecological Studies in the Antarctic Sea Ice Zone (pp. 157–168). Springer Berlin Heidelberg. doi:10.1007/978-3-642-59419-9_21

  • Gutt J (2004) Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos. Antarct Sci. doi:10.1017/S0954102000000365

  • Gutt J, Starmans A (2001) Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol 24:615–619. doi:10.1007/s003000100263

    Article  Google Scholar 

  • Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 26(4):276–278. doi:10.1007/s00300-002-0468-6

    Google Scholar 

  • Gutt J, Barratt I, Domack E et al (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res Part II Top Stud Oceanogr 58:74–83. doi:10.1016/j.dsr2.2010.05.024

    Article  Google Scholar 

  • Gutt J, Cape M, Dimmler W et al (2013) Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol 36(6):895–906. doi:10.1007/s00300-013-1315-7

    Article  Google Scholar 

  • Johst K, Gutt J, Wissel C, Grimm V (2006) Diversity and disturbances in the Antarctic megabenthos: feasible versus theoretical disturbance ranges. Ecosystems 9:1145–1155. doi:10.1007/s10021-006-0054-9

    Article  Google Scholar 

  • Kennicutt MC, Chown SL, Cassano JJ et al (2014) Polar research: six priorities for Antarctic science. Nature 512:23–25. doi:10.1038/512023a

    Article  Google Scholar 

  • Kennicutt MC, Chown SL, Cassano JJ et al (2015) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci 27:3–18. doi:10.1017/S0954102014000674

    Article  Google Scholar 

  • Kowalke J, Tatián M, Sahade R, Arntz W (2001) Production and respiration of Antarctic ascidians. Polar Biol 24:663–669. doi:10.1007/s003000100266

    Article  Google Scholar 

  • Kühne S (1997) Solitary Ascidians in the Potter Cove (King George Island, Antarctica) their ecological role and population dynamics. Berichte zur Polarforschung (Reports on Polar Research) 252

  • Leveque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady–state and time–dependent problems. SIAM 98

  • Lohrer A, Hewitt J, Thrush S (2006) Assessing far-field effects of terrigenous sediment loading in the coastal marine environment. Mar Ecol Prog Ser 315:13–18. doi:10.3354/meps315013

    Article  Google Scholar 

  • Margalef R (2005) Ecología, 10th edn. Ediciones Omega, Barcelona

    Google Scholar 

  • Momo F, Sahade R, Tatián M (2008) Benthic animal communities of Potter Cove (King George Island, Antarctica): observed patterns and explanatory models. Ber Polarforsch Meeresforsch 571:162–167

    Google Scholar 

  • Monien P, Schnetger B, Brumsack H-J et al (2011) A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarct Sci 23:255–267. doi:10.1017/S095410201100006X

    Article  Google Scholar 

  • Nonato EF, Brito TA, De Paiva PC et al (2000) Benthic megafauna of the nearshore zone of Martel Inlet (King George Island, South Shetland Islands, Antarctica): depth zonation and underwater observations. Polar Biol 23(8):580–588. doi:10.1007/s003000000129

    Article  Google Scholar 

  • Pakhomov EA, Fuentes VL, Schloss IR et al (2003) Beaching of the tunicate Salpa thompsoni at high levels of suspended particulate matter in the Southern Ocean. Polar Biol 26:427–431. doi:10.1007/s00300-003-0494-z

    Google Scholar 

  • Peck LS (2005) Prospects for surviving climate change in Antarctic aquatic species. Front Zool 2(1):1–9. doi:10.1186/1742-9994-2-9

    Article  Google Scholar 

  • Philipp EER, Husmann G, Abele D (2011) The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica. Antarct Sci 23:127–138. doi:10.1017/S0954102010000970

    Article  Google Scholar 

  • Potthoff M, Johst K, Gutt J (2005) How to survive as a pioneer species in the Antarctic benthos: minimum dispersal distance as a function of lifetime and disturbance. Polar Biol 29:543–551. doi:10.1007/s00300-005-0086-1

    Article  Google Scholar 

  • Poulin E, Palma AT, Féral J (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222

    Article  Google Scholar 

  • Pritchard HD, Vaughan DG (2007) Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J Geophys Res 112:F3. doi:10.1029/2006JF000597

    Article  Google Scholar 

  • Rauschert M (1991) Faunistic investigations in the benthal of King George Island. Reports on Polar Research. 76

  • Refsgaard JC, Madsen H, Andréassian V et al (2013) A framework for testing the ability of models to project climate change and its impacts. Clim Change 122:271–282. doi:10.1007/s10584-013-0990-2

    Article  Google Scholar 

  • Sahade R (1999) Patrones y procesos en una comunidad Epi-Bentónica Antártica: el ejemplo de Caleta Potter. Universidad Nacional de Córdoba

  • Sahade R, Tatián M, Kowalke J et al (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol 19:85–91. doi:10.1007/s003000050218

    Article  Google Scholar 

  • Sahade R, Tarantelli S, Tatián M, Mercuri G (2008) Benthic community shifts: A possible linkage to climate change? Berichtezur Polar und Meeresforsch 571:331–337

  • Sahade R, Lagger C, Torre L et al (2015) Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. doi:10.1126/sciadv.1500050

    Google Scholar 

  • Schloss IR, Abele D, Moreau S et al (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66. doi:10.1016/j.jmarsys.2011.10.006

    Article  Google Scholar 

  • Servetto N, Sahade R (2016) Reproductive seasonality of the Antarctic Sea Pen Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). PLoS One 11(10):e0163152. doi:10.1371/journal.pone.0163152

    Article  Google Scholar 

  • Servetto N, Torre L, Sahade R (2013) Reproductive biology of the Antarctic “sea pen” Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae). Polar Res 32

  • Slattery M, Bockus D (1997) Sedimentation in McMurdo Sound, Antarctica: a disturbance mechanism for benthic invertebrates. Polar Biol 18:172–179. doi:10.1007/s003000050174

    Article  Google Scholar 

  • Smale D (2008) Continuous benthic community change along a depth gradient in Antarctic shallows: evidence of patchiness but not zonation. Polar Biol 31:189–198. doi:10.1007/s00300-007-0346-3

    Article  Google Scholar 

  • Smale D, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31(3):289–305. doi:10.1111/j.0906-7590.2008.05456.x

    Article  Google Scholar 

  • Smale D, Barnes DKA, Fraser K (2007) The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol 30:769–779. doi:10.1007/s00300-006-0236-0

    Article  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–8. doi:10.1038/nature04161

    Article  Google Scholar 

  • Strikwerda JC (2004) Finite difference schemes and partial differential equations. 2nd ed. SIAM

  • Teixidó N, Garrabou J, Gutt J, Arntz WE (2004) Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser 278:1–16. doi:10.3354/meps278001

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Cummings VJ et al (2004) Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Environ 2:299–306. doi:10.1890/1540-9295(2004)002[0299:MWESIT]2.0.CO;2

    Article  Google Scholar 

  • Torre L, Servetto N, Eöry MLM et al (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations. Polar Biol 35:1208. doi:10.1007/s00300-012-1208-1

    Article  Google Scholar 

  • Torre L, Abele D, Lagger C et al (2014) When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation. Mar Environ Res 99:179–87. doi:10.1016/j.marenvres.2014.05.014

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P et al (2009) Antarctic climate change and the environment: a contribution to the International Polar Year 2007–2008. Scientific Committee on Antarctic Research, Cambridge

    Google Scholar 

  • Turner J, Lu H, White I et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415. doi:10.1038/nature18645

    Article  Google Scholar 

  • Urban HJ, Mercuri G (1998) Population dynamics of the bivalve Laternula elliptica from Potter Cove, King George Island, South Shetland Islands. Antarct Sci 10(02):153–160

    Article  Google Scholar 

  • Wlodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167. doi:10.1007/s00300-003-0568-y

    Article  Google Scholar 

  • Wlodarska-Kowalczuk M, Weslawski J (2001) Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Clim Res 18:127–132

    Article  Google Scholar 

  • Wlodarska-Kowalczuk M, Pearson T, Kendall M (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 303:31–41. doi:10.3354/meps303031

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Carlini (former Jubany)–Dallmann staff for their support. Funding: Logistic and financial support were provided by Instituto Antártico Argentino, CONICET, FONCyT (Fondo para la Investigación Científica y Tecnológica), SECyT-UNC (Secretaría de Ciencia y Tecnología–UNC), DFG (Deutsche Forschungsgemeinschaft), and EU (European Union) via grants PICTO-DNA N° 119 and 36323, DFG project no. BR 775/25-1, IMCOAST (impact of climate induced glacial melting on marine coastal systems in the western Antarctic Peninsula region), IMCONet [FP7 IRSES (International Research Staff Exchange Scheme), action no. 319718], and PADI Foundation Grant 11234.

Author attribution

LT: developed the model and parameters, carried out analyses, and wrote the original manuscript

PCCT: developed the model program and writing

FM: developed the model, discussed the results and writing.

JFCAM: developed the model program and writing.

RS: designed the project discussed the results and writing.

All authors discussed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Torre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torre, L., Tabares, P.C.C., Momo, F. et al. Climate change effects on Antarctic benthos: a spatially explicit model approach. Climatic Change 141, 733–746 (2017). https://doi.org/10.1007/s10584-017-1915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1915-2

Keywords

Navigation