Skip to main content

Advertisement

Log in

CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transition-metal oxides have attracted increased attention in the application of high-performance lithium ion batteries (LIBs), owing to its higher reversible capacity, better structural stability and high electronic conductivity. Herein, CoWO4 nanoparticles wrapped by reduced graphene oxide (CoWO4–RGO) were synthesized via a facile hydrothermal route followed by a subsequent heat-treatment process. When evaluated as the anode of LIB, the synthetic CoWO4–RGO nanocomposite exhibits better Li+ storage properties than pure CoWO4 nanostructures synthesized without graphene oxide (GO). Specifically, it delivers a high initial specific discharge capacity of 1100 mAh·g−1 at a current density of 100 mA·g−1, and a good reversible performance of 567 mAh·g−1 remains after the 100th cycle. Moreover, full battery using CoWO4–RGO as anode and commercial LiCoO2 powder as cathode was assembled, which can be sufficient to turn on a 3 V, 10 mW blue light emitting diode (LED). The enhanced electrochemical performance for lithium storage can be attributed to the three-dimensional (3D) structure of the CoWO4–RGO nanocomposite, which can accommodate huge volume changes, and synergetic effect between CoWO4 and reduced graphite oxide (RGO) nanosheets, including an increased conductivity, shortened Li+ diffusion path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    Article  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.

    Article  Google Scholar 

  3. Poizot P, Dolhem F, Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci. 2011;4(6):2003.

    Article  Google Scholar 

  4. Dong YC, Ma RJ, Hu MJ, Cheng H, Lee JM, Li YY, Zapien JA. Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. J Power Sour. 2014;261(3):184.

    Article  Google Scholar 

  5. Xia YS, Nguyen TD, Yang M, Lee B, Santos A, Podsiadlo P, Tang ZY, Glotzer SC, Kotov NA. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat Nanotechnol. 2011;6(9):580.

    Article  Google Scholar 

  6. Jiang L, Qu Y, Ren ZY, Yu P, Zhao DD, Zhou W, Wang L, Fu HF. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl Mat Interfaces. 2015;7(3):1595.

    Article  Google Scholar 

  7. Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;45(19):1488.

    Article  Google Scholar 

  8. Chen G, Yan L, Luo H, Guo SJ. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv Mater. 2016;28(35):7580.

    Article  Google Scholar 

  9. Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012;12(6):3005.

    Article  Google Scholar 

  10. Zhao DD, Yu P, Wang L, Sun FF, Zhao L, Tian CG, Zhou W, Fu HG. Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in situ XAFs. Nano Res. 2016;10(1):1.

    Google Scholar 

  11. Yin L, Zhang Z, Li Z, Hao F, Li Q, Wang C, Fan R, Qi Y. Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv Funct Mater. 2014;13(26):78.

    Google Scholar 

  12. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2015;34(1):1–5.

    Article  Google Scholar 

  13. Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun XL. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater. 2016;6(17):1.

    Google Scholar 

  14. Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.

    Article  Google Scholar 

  15. Kim S, Lee HW, Muralidharan P. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011;4(5):505.

    Article  Google Scholar 

  16. Hou LR, Lian L, Zhang LH, Pang G, Yuan CZ, Zhang XG. Mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater. 2015;25(2):238.

    Article  Google Scholar 

  17. Fan ZY, Wang BR, Xi YX, Xu X, Li MY, Li J, Coxon P, Cheng SD, Gao GX, Xiao CH, Yang G, Xi K, Ding SJ, Kumar RV. A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon. 2016;99(1):633.

    Article  Google Scholar 

  18. Jiang BB, Han CP, Li B, He YJ, Lin ZQ. In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano. 2016;10(2):2728.

    Article  Google Scholar 

  19. Sun YF, Jiang SS, Bi WT, Wu CZ, Xie Y. Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J Power Sour. 2011;196(20):8644.

    Article  Google Scholar 

  20. Wang Y, Zhang WZ, Luo CY, Wu XM, Wang QG, Chen WX, Li JH. Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@SiO2-decorated reduced graphene oxide nanosheets. Ceram Int. 2016;42(15):17374.

    Article  Google Scholar 

  21. Zhang G, Yu L, Wu HB, Hoster HE, Lou XW. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater. 2012;24(34):4609.

    Article  Google Scholar 

  22. Feng C, Wang W, Chen X, Wang SQ, Guo ZP. Synthesis and electrochemical properties of ZnMn2O4, anode for lithium-ion batteries. Electrochim Acta. 2015;178(1):847.

    Article  Google Scholar 

  23. Zhong YR, Yang M, Zhou XL, Luo YT, Wei JP, Zhou Z. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites. Adv Mater. 2015;27(5):806.

    Article  Google Scholar 

  24. Wang H, Zhuo S, Liang Y, Han X, Zhang B. General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew Chem. 2016;55(31):9201.

    Article  Google Scholar 

  25. Zhou L, Zhao D, Lou XW. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater. 2012;24(6):745.

    Article  Google Scholar 

  26. Goripartia S, Mielea E, Angelisa FD, Fabrizioc ED, Zaccariaa RP, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sour. 2014;257(3):421.

    Article  Google Scholar 

  27. Mahmood N, Tang TY, Hou YL. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater. 2016;6(8):1.

    Google Scholar 

  28. Yu H, Guan C, Rui X, Ouyang YD, Huang Y, Zhang H, Hoster HE, Fan HJ, Yan Q. Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo4O4 and their high anode performance for lithium ion batteries. Nanoscale. 2014;6(18):10556.

    Article  Google Scholar 

  29. Sharma Y, Sharma N, Subba Rao G, Chowdari BVR. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater. 2007;17(15):2855.

    Article  Google Scholar 

  30. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21631004, 21371053, 21401048 and 21173072), the International Science and Technology Cooperation Program of China (No. 2014DFR41110), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2016016) and the Harbin Science and Technology Innovation Talents Research Foundation (No. 2015RAQXJ057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Wang, L., Liu, X. et al. CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Met. 36, 411–417 (2017). https://doi.org/10.1007/s12598-017-0889-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0889-6

Keywords

Navigation