Skip to main content
Log in

Modeling of active plasmonic coupler and filter based on metal-dielectric-metal waveguide

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Optical functions such as filtering and coupling play an important role in Nano-optics systems. This paper discusses the ability of MDM plasmonic slot waveguide to realize these functions with some help from stub resonators connected either in parallel or in series with the slot waveguide according to the needed function. These resonators are filled with an active material has a tunable absorption coefficient (K) which indicates the power level of an external control signal. The adjustable parameters of the stub resonators can control the properties of our devices. At our desired optical wavelength λ = 1550 nm; first, we introduce a unidirectional coupler satisfies an insertion loss (coupler factor) closes to 0 dB and a coupling ratio closes to 100% at the desired output channel. Second a band-reject filter satisfies a pass-band transmission close to 90% and has a forbidden band width of 75 nm located in the frequency range of (1510–1585) nm. The components would be useful in the optical interconnect networks, photonic integrated circuits, and wavelength division multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Atwater, H.A.: The promise of plasmonics. Sci. Am. 296, 56–63 (2007)

    Article  Google Scholar 

  • Deshko, Yury, Chen, Zhiyi, Krusin-Elbaum, Lia, Menon, Vinod, Trevino, Jacob, Khanikaev, Alexander: Propagation of surface plasmon polaritons in thin films of topological insulators. Opt. Express 24, 7398–7410 (2016)

    Article  ADS  Google Scholar 

  • Dickson, W., Wurtz, G.A., Evans, P.R., Pollard, R.J., Zayats, A.V.: Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 8, 281–286 (2008)

    Article  ADS  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: Plasmonic directional couplers based on multi-slit waveguides. Plasmon. 1–8 (2016). doi:10.1007/s11468-016-0303-5

  • Guan, J., Zhu, X.: Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J. Opt. Soc. Am. B 26, 1263–1268 (2009)

    Article  Google Scholar 

  • Huang, Yin, Min, Changjun, Yang, Liu, Veronis, Georgios: Nanoscale plasmonic devices based on metal-dielectric-metal stub resonators. Int. J. Opt. 2012, 1–13 (2012)

    Article  Google Scholar 

  • Jäckel, H., Bona, G.L., Hafner, C.: Ultrafast, compact, and energy efficient all-optical switches based on a saturable absorbing cavity. IEEE J. Quantum Electron. 50(12), 1–10 (2014). doi:10.1109/JQE.2014.2365995

    Google Scholar 

  • Lalanne, P., Hugonin, J.P., Rodier, J.C.: Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95(26), 263902 (2005)

    Article  ADS  Google Scholar 

  • Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)

    Article  ADS  Google Scholar 

  • MacDonald, K.F., Sámson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)

    Article  ADS  Google Scholar 

  • Min, C., Veronis, G.: “All-optical absorption switches in subwavelength metal-dielectricmetal plasmonic waveguides “, In: Proceedings of SPIE, Vol. 7394, pp., (2009)

  • Min, C., Wang, P., Chen, C., Deng, Y., Lu, Y., Ming, H., Ning, T., Zhou, Y., Yang, G.: All-optical switching in sub-wavelength metallic grating structure containing nonlinear optical materials. Opt. Lett. 33, 869–871 (2008)

    Article  ADS  Google Scholar 

  • Nirmal, M., et al.: Observation of the dark exciton in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995)

    Article  ADS  Google Scholar 

  • Pacifici, D., Lezec, H.J., Atwater, H.A.: All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 1, 402–406 (2007)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1985)

    Google Scholar 

  • Shin, Wonseok, Fan, Shanhui: Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231, 3406–3431 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang, H., Yang, J., Zhang, J., Huang, J., Wu, W., Chen, D., Xiao, G.: Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt. Lett. 41, 1233–1236 (2016)

    Article  ADS  Google Scholar 

  • Wurtz, G.A., Zayats, A.V.: Nonlinear surface plasmon polaritonic crystals. Laser Photonics Rev. 2, 125–135 (2008)

    Article  Google Scholar 

  • Yu, Z., Veronis, G., Fan, S., Brongersma, M.L.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92(4), 041117 (2008). doi:10.1063/1.2839324

    Article  ADS  Google Scholar 

  • Zhang, Z., Zhang, L., Li, H., Chen, H.: Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Plasmonics 14, 1151–1155 (2016)

    Google Scholar 

  • Zhou, W., Huang, X.: Active control of optical signals in the plasmonic waveguides. Int. J. Electr. Energy 1(4), 304–307 (2013)

    Article  ADS  Google Scholar 

  • Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Elbialy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbialy, S., Yousif, B. & Samra, A. Modeling of active plasmonic coupler and filter based on metal-dielectric-metal waveguide. Opt Quant Electron 49, 145 (2017). https://doi.org/10.1007/s11082-017-0961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0961-3

Keywords

Navigation