Skip to main content

Advertisement

Log in

Recent progress in Li–S and Li–Se batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high (several times higher than that of traditional Li-ion batteries). Besides, Li–S and Li–Se batteries are low cost and environmental benign. However, the commercial applications of Li–S and Li–Se batteries are hindered by the dissolution and shuttle phenomena of polysulfide (polyselenium), the low conductivity of S (Se), etc. To overcome these drawbacks, scientists have come up with various methods, such as optimizing the electrolyte, synthesizing composite electrode of S/polymer, S/carbon, S/metal organic framework (MOF) and constructing novelty structure of battery. In this review, we present a systematic introduction about the recent progress of Li–S and Li–Se batteries, especially in the area of electrode materials, both of cathode material and anode material for Li–S and Li–Se batteries. In addition, other methods to lead a high-performance Li–S and Li–Se batteries are also briefly summarized, such as constructing novelty battery structure, adopting proper charge–discharge conditions, heteroatom doping into sulfur molecules, using different kinds of electrolytes and binders. In the end of the review, the developed directions of Li–S and Li–Se batteries are also pointed out. We believe that combining proper porous carbon matrix and heteroatom doping may further improve the electrochemical performance of Li–S and Li–Se batteries. We also believe that Li–S and Li–Se batteries will get more exciting results and have promising future by the effort of battery community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chen GM, Geng HL, Wang ZW, Yang RZ, Xu YH. On electrochemistry of Al2O3-coated LiCoO2 composite cathode with improved cycle stability. Ionics. 2016;22(5):629.

    Article  Google Scholar 

  2. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008;8(11):3948.

    Article  Google Scholar 

  3. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem Commun. 2003;5(11):940.

    Article  Google Scholar 

  4. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152(3):A607.

    Article  Google Scholar 

  5. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci. 2011;4(2):269.

    Article  Google Scholar 

  6. Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C–LiFePO4/graphite Li-ion cells. Electrochem Commun. 2005;7(7):669.

    Article  Google Scholar 

  7. Wang Y, Liu H, Wang K, Eiji H, Wang Y, Zhou H. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J Mater Chem. 2009;19(37):6789.

    Article  Google Scholar 

  8. Zeng LC, Pan FS, Li WH, Jiang Y, Zhong XW, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale. 2014;6(16):9579.

    Article  Google Scholar 

  9. Zhou WD, Yu YC, Chen H, DiSalvo FJ, Abruna HD. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc. 2013;135(44):16736.

    Article  Google Scholar 

  10. Zhou GM, Yin LC, Wang DW, Li L, Pei SF, Gentle IR, Li F, Cheng HM. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano. 2013;7(6):5367.

    Article  Google Scholar 

  11. Li XL, Cao YL, Qi W, Saraf LV, Xiao J, Nie ZM, Mietek J, Zhang JG, Schwenzer B, Liu J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem. 2011;21(41):16603.

    Article  Google Scholar 

  12. Ji LW, Rao MM, Aloni S, Wang L, Cairns EJ, Zhang YG. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci. 2011;4(12):5053.

    Article  Google Scholar 

  13. He G, Ji XL, Nazar L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878.

    Article  Google Scholar 

  14. Yang XL, Qian XY, Jin LN, Zhao D, Wang SW, Rao DW, Yao SS, Shen XQ, Zhou YY, Xi XM. Mesoporous TiO2 nanosheet with a large amount of exposed 001 facets as sulfur host for high-performance lithium–sulfur batteries. J Solid State Electrochem. 2016;20(8):2161.

    Article  Google Scholar 

  15. Shaibani M, Akbari A, Sheath P, Easton CD, Banerjee PC, Konstas K, Fakhfouri A, Barghamadi M, Musameh MM, Best AS, Ruther T, Mahon PJ, Hill MR, Hollenkamp AF, Majumder M. Suppressed polysulfide crossover in Li–S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode. ACS Nano. 2016;10(8):7768.

    Article  Google Scholar 

  16. Yang YX, Sun W, Zhang J, Yue XY, Wang ZH, Sun KN. High rate and stable cycling of lithium–sulfur batteries with carbon fiber cloth interlayer. Electrochim Acta. 2016;209:691.

    Article  Google Scholar 

  17. Xie KY, Zhang K, Han YZ, Yuan K, Song Q, Wang JG, Shen C, Liu XR, Wei BQ. A novel TiO2-wrapped activated carbon fiber/sulfur hybrid cathode for high performance lithium sulfur batteries. Electrochim Acta. 2016;210:415.

    Article  Google Scholar 

  18. Wu HW, Huang Y, Yang YW, Fu HT, Sun X, Ding X. Insight into the electrochemical behavior of lithium–sulfur cells assisted by potassium hydroxide activated carbon black and polyaniline nanorods. Electrochim Acta. 2016;209:643.

    Article  Google Scholar 

  19. Waluś S, Robba A, Bouchet R, Barchasz C, Alloin F. Influence of the binder and preparation process on the positive electrode electrochemical response and Li/S system performances. Electrochim Acta. 2016;210:492.

    Article  Google Scholar 

  20. Lee SK, Lee YJ, Sun YK. Nanostructured lithium sulfide materials for lithium–sulfur batteries. J Power Sour. 2016;323:174.

    Article  Google Scholar 

  21. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(1):19.

    Article  Google Scholar 

  22. Liang CD, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater. 2009;21(19):4724.

    Article  Google Scholar 

  23. Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.

    Article  Google Scholar 

  24. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc. 2009;156(8):A694.

    Article  Google Scholar 

  25. Zhang SS. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sour. 2013;231:153.

    Article  Google Scholar 

  26. Ji XL, Evers S, Black R, Nazar LF. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun. 2011;2(325):1293.

    Google Scholar 

  27. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater. 2011;23(47):5641.

    Article  Google Scholar 

  28. Yang Y, Zheng GY, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018.

    Article  Google Scholar 

  29. Zhang SS. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta. 2012;70:344.

    Article  Google Scholar 

  30. Suo LM, Hu YS, Li H, Armand M, Chen LQ. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4(2985):3985.

    Google Scholar 

  31. Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc. 2004;151(11):A1696.

    Article  Google Scholar 

  32. Zhu PY, Song JX, Lv DP, Wang DH, Jaye C, Fischer DA, Wu TP, Chen YS. Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium–sulfur battery: an X-ray absorption spectroscopic study. J Phys Chem C. 2014;118(15):7765.

    Article  Google Scholar 

  33. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751.

    Article  Google Scholar 

  34. Zhang ZW, Li ZQ, Hao FB, Wang XK, Li Q, Qi YX, Fan RH, Yin LW. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium–sulfur batteries with high rate capability and cycling stability. Adv Funct Mater. 2014;24(17):2500.

    Article  Google Scholar 

  35. Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.

    Article  Google Scholar 

  36. Tao XY, Wang JG, Ying ZG, Cai QX, Zheng GY, Gan YP, Huang H, Xia Y, Liang C, Zhang WK, Cui Y. Strong sulfur binding with conducting magneli-phase Ti n O2n−1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014;14(9):5288.

    Article  Google Scholar 

  37. Fanous J, Wegner M, Grimminger J, Andresen A, Buchmeiser MR. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem Mater. 2011;23(22):5024.

    Article  Google Scholar 

  38. Zheng GY, Zhang QF, Cha JJ, Yang Y, Li WY, Seh ZW, Cui Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013;13(3):1265.

    Article  Google Scholar 

  39. Zhang Z, Li Q, Lai YQ, Li J. Confine sulfur in polyaniline-decorated hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries. J Phys Chem C. 2014;118(25):13369.

    Article  Google Scholar 

  40. Yao HB, Zheng GY, Hsu PC, Kong DS, Cha JJ, Li WY, Seh ZW, McDowell MT, Yan K, Liang Z, Narasimhan VK, Cui Y. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat Commun. 2014;5(3943):4943.

    Google Scholar 

  41. Kim H, Wu FX, Lee JT, Nitta N, Lin HT, Oschatz M, Cho WI, Kaskel S, Borodin O, Yushin G. In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. 2015;5(6):1401792.

    Article  Google Scholar 

  42. Wang MR, Zhang HM, Zhang YN, Li J, Zhang FX, Hu W. A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability. J Solid State Electrochem. 2013;17(8):2243.

    Article  Google Scholar 

  43. Li WY, Liang Z, Lu ZD, Yao HB, Seh ZW, Yan K, Zheng GY, Cui Y. A sulfur cathode with pomegranate-like cluster structure. Adv Energy Mater. 2015;5(16):1614.

    Article  Google Scholar 

  44. Lee JT, Zhao YY, Thieme S, Kim H, Oschatz M, Borchardt L, Magasinski A, Cho WI, Kaskel S, Yushin G. Sulfur-infiltrated micro-and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Adv Mater. 2013;25(33):4573.

    Article  Google Scholar 

  45. Nelson J, Misra S, Yang Y, Jackson A, Liu YJ, Wang HL, Dai HJ, Andrews JC, Cui Y, Toney MF. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc. 2012;134(14):6337.

    Article  Google Scholar 

  46. Xie K, You Y, Yuan K, Lu W, Zhang K, Xu F, Ye M, Ke S, Shen C, Zeng X, Fan X, Wei B. Ferroelectric-enhanced polysulfide trapping for lithium–sulfur battery improvement. Adv Mater. 2016;29(6):1604724.

    Article  Google Scholar 

  47. Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. Nanoscale. 2016;8(28):13638.

    Article  Google Scholar 

  48. Liang Z, Zheng GY, Liu C, Liu N, Li WY, Yan K, Yao HB, Hsu PC, Chu S, Cui Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015;15(5):2910.

    Article  Google Scholar 

  49. Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016;28(15):2888.

    Article  Google Scholar 

  50. Seh ZW, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013;4(1331):2327.

    Google Scholar 

  51. Li Z, Yuan L, Yi Z, Liu Y, Huang Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy. 2014;9:229.

    Article  Google Scholar 

  52. Yi Z, Yuan L, Sun D, Li Z, Wu C, Yang W, Wen Y, Shan B, Huang Y. High-performance lithium–selenium batteries promoted by heteroatom-doped microporous carbon. J Mater Chem A. 2015;3(6):3059.

    Article  Google Scholar 

  53. Liu LL, Hou YY, Wu XW, Xiao SY, Chang Z, Yang YQ, Wu YP. Nanoporous selenium as a cathode material for rechargeable lithium–selenium batteries. Chem Commun. 2013;49(98):11515.

    Article  Google Scholar 

  54. Zhang Z, Zhang Z, Zhang K, Yang X, Li Q. Improvement of electrochemical performance of rechargeable lithium–selenium batteries by inserting a free-standing carbon interlayer. RSC Adv. 2014;4(30):15489.

    Article  Google Scholar 

  55. Luo C, Zhu Y, Wen Y, Wang J, Wang C. Carbonized polyacrylonitrile-stabilized SeS x cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater. 2014;24(26):4082.

    Article  Google Scholar 

  56. Han K, Liu Z, Shen JM, Lin YY, Dai F, Ye HQ. A free-standing and ultralong-life lithium–selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv Funct Mater. 2015;25(3):455.

    Article  Google Scholar 

  57. Kundu D, Krumeich F, Nesper R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J Power Sour. 2013;236:112.

    Article  Google Scholar 

  58. Liu L, Hou Y, Yang Y, Li M, Wang X, Wu Y. A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Adv. 2014;4(18):9086.

    Article  Google Scholar 

  59. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J Am Chem Soc. 2012;134(10):4505.

    Article  Google Scholar 

  60. Cui Y, Abouimrane A, Lu J, Bolin T, Ren Y, Weng W, Sun C, Maroni VA, Heald SM, Amine K. (De)lithiation mechanism of Li/SeS(x) (x = 0–7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J Am Chem Soc. 2013;135(21):8047.

    Article  Google Scholar 

  61. Han K, Liu Z, Ye HQ, Dai F. Flexible self-standing graphene–Se@CNT composite film as a binder-free cathode for rechargeable Li–Se batteries. J Power Sour. 2014;263:85.

    Article  Google Scholar 

  62. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. Angew Chem Int Ed. 2013;52(32):8363.

    Article  Google Scholar 

  63. Luo C, Xu YH, Zhu YJ, Liu YH, Zheng SY, Liu Y, Langrock A, Wang CS. Selenium@Mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano. 2013;7(9):8003.

    Article  Google Scholar 

  64. Luo C, Wang J, Suo L, Mao J, Fan X, Wang C. In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries. J Mater Chem A. 2015;3(2):555.

    Article  Google Scholar 

  65. Almeida C, Costa H, Kadhirvel P, Queiroz AM, Dias RCS, Costa M. Electrochemical activity of sulfur networks synthesized through RAFT polymerization. J Appl Polym Sci. 2016;133(39):1097.

    Article  Google Scholar 

  66. Li CM, Zhang H, Otaegui L, Singh G, Armand M, Rodriguez-Martinez LM. Estimation of energy density of Li–S batteries with liquid and solid electrolytes. J Power Sour. 2016;326:1.

    Article  Google Scholar 

  67. Li L, Zhou GM, Yin LC, Koratkar N, Li F, Cheng HM. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li–S batteries. Carbon. 2016;108:120.

    Article  Google Scholar 

  68. Li SH, Xia XH, Wang XL, Tu JP. Free-standing sulfur cathodes composited with carbon nanorods arrays for Li–S batteries application. Mater Res Bull. 2016;83:474.

    Article  Google Scholar 

  69. Liu M, Jiang HR, Ren YX, Zhou D, Kang FY, Zhao TS. In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium–sulfur batteries. Electrochim Acta. 2016;213:871.

    Article  Google Scholar 

  70. Park JW, Kim I, Kim KW, Nam TH, Cho KK, Ahn JH, Ryu HS, Ahn HJ. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries. Mater Res Bull. 2016;82:109.

    Article  Google Scholar 

  71. Ryu HS, Kim BW, Park JW, Nam TH, Cho KK, Kim KW, Ahn JH, Ahn HJ. Effect of solvents on the electrochemical properties of binder-free sulfur cathode films in lithium–sulfur batteries. Mater Res Bull. 2016;82:102.

    Article  Google Scholar 

  72. Zhou L, Zong Y, Liu ZL, Yu AS. A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li–S batteries. Renew Energy. 2016;96:333.

    Article  Google Scholar 

  73. Hanumantha PJ, Gattu B, Shanthi PM, Damle SS, Basson Z, Bandi R, Datta MK, Park S, Kumta PN. Flexible sulfur wires (Flex-SWs)-a new versatile platform for lithium–sulfur batteries. Electrochim Acta. 2016;212:286.

    Article  Google Scholar 

  74. Koh JY, Kim S, Park MS, Yang HJ, Yang TH, Jung Y. The role of the carbon framework in sulfur–carbon composite cathodes in Li–S batteries. Electrochim Acta. 2016;212:212.

    Article  Google Scholar 

  75. Hong XH, Jin J, Wen ZY, Zhang SP, Wang QS, Shen C, Rui K. On the dispersion of lithium–sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. J Power Sour. 2016;324:455.

    Article  Google Scholar 

  76. Juhl AC, Schneider A, Ufer B, Brezesinski T, Janek J, Froba M. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance. Beilstein J Nanotechnol. 2016;7(1):1229.

    Article  Google Scholar 

  77. Kim KR, Lee KS, Ahn CY, Yu SH, Sung YE. Discharging a Li–S battery with ultra-high sulphur content cathode using a redox mediator. Sci Rep. 2016;6:32433.

    Article  Google Scholar 

  78. Sun ZJ, Wang SJ, Yan LL, Xiao M, Han DM, Meng YZ. Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium–sulfur battery application. J Power Sour. 2016;324:547.

    Article  Google Scholar 

  79. Zegeye TA, Kuo CFJ, Wotango AS, Pan CJ, Chen HM, Haregewoin AM, Cheng JH, Su WN, Hwang BJ. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium–sulfur batteries. J Power Sour. 2016;324:329.

    Article  Google Scholar 

  80. Zhou GM, Wang DW, Li F, Hou PX, Yin LC, Liu C, Lu GQ, Gentle IR, Cheng HM. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci. 2012;5(10):8901.

    Article  Google Scholar 

  81. Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun. 2006;8(4):610.

    Article  Google Scholar 

  82. Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Ferey G, Tarascon JM. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J Am Chem Soc. 2011;133(40):16154.

    Article  Google Scholar 

  83. Zhao MQ, Liu XF, Zhang Q, Tian GL, Huang JQ, Zhu WC, Wei F. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano. 2012;6(12):10759.

    Article  Google Scholar 

  84. Wang MJ, Wang WK, Wang AB, Yuan KG, Miao LX, Zhang XL, Huang YQ, Yu ZB, Qiu JY. A multi-core-shell structured composite cathode material with a conductive polymer network for Li–S batteries. Chem Commun. 2013;49(87):10263.

    Article  Google Scholar 

  85. Li WY, Zhang QF, Zheng GY, Seh ZW, Yao HB, Cui Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013;13(11):5534.

    Article  Google Scholar 

  86. Fu YZ, Manthiram A. Enhanced cyclability of lithium–sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor. Chem Mater. 2012;24(15):3081.

    Article  Google Scholar 

  87. Yin LC, Wang JL, Lin FJ, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci. 2012;5(5):6966.

    Article  Google Scholar 

  88. Lacey MJ, Jeschull F, Edstrom K, Brandell D. Why PEO as a binder or polymer coating increases capacity in the Li–S system. Chem Commun. 2013;49(76):8531.

    Article  Google Scholar 

  89. Zhang YG, Zhao Y, Konarov A, Gosselink D, Li Z, Ghaznavi M, Chen P. One-pot approach to synthesize PPy@S core-shell nanocomposite cathode for Li/S batteries. J Nanopart Res. 2013;15(10):1.

    Google Scholar 

  90. Wang JL, Yang J, Xie JY, Xu NX, Li Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun. 2002;4(6):499.

    Article  Google Scholar 

  91. Wang J, Liu L, Ling Z, Yang J, Wan C, Jiang C. Polymer lithium cells with sulfur composites as cathode materials. Electrochim Acta. 2003;48(13):1861.

    Article  Google Scholar 

  92. Song J, Xu T, Gordin ML, Zhu P, Lv D, Jiang Y-B, Chen Y, Duan Y, Wang D. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv Funct Mater. 2014;24(9):1243.

    Article  Google Scholar 

  93. Wang HQ, Chen ZX, Liu HK, Guo ZP. A facile synthesis approach to micro-macroporous carbon from cotton and its application in the lithium–sulfur battery. RSC Adv. 2014;4(110):65074.

    Article  Google Scholar 

  94. Pang Q, Liang X, Kwork C, Nazar L. F, The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J Electrochem Soc. 2015;162(14):A2576.

    Article  Google Scholar 

  95. Zhang B, Qin X, Li GR, Gao XP. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci. 2010;3(10):1531.

    Article  Google Scholar 

  96. Zheng W, Liu YW, Hu XG, Zhang CF. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim Acta. 2006;51(7):1330.

    Article  Google Scholar 

  97. Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011;11(10):4462.

    Article  Google Scholar 

  98. Balakumar K, Sathish R, Kalaiselvi N. Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium–sulfur system. Electrochim Acta. 2016;209:171.

    Article  Google Scholar 

  99. Li D, Han F, Wang S, Cheng F, Sun Q, Li WC. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl Mater Interfaces. 2013;5(6):2208.

    Article  Google Scholar 

  100. Moreno N, Caballero A, Morales J, Agostini M, Hassoun J. Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode. Mater Chem Phys. 2016;180:82.

    Article  Google Scholar 

  101. Deng WN, Hu AP, Chen XH, Zhang SY, Tang QL, Liu Z, Fan BB, Xiao KK. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium–sulfur batteries. J Power Sour. 2016;322:138.

    Article  Google Scholar 

  102. Rehman S, Guo SJ, Hou YL. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li–S battery. Adv Mater. 2016;28(16):3167.

    Article  Google Scholar 

  103. Nersisyan HH, Joo SH, Yoo BU, Kim DY, Lee TH, Eom JY, Kim C, Lee KH, Lee JH. Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium–sulfur battery. Carbon. 2016;103:255.

    Article  Google Scholar 

  104. Zeng L, Pan F, Li W, Jiang Y, Zhong X, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale. 2014;6(16):9579.

    Article  Google Scholar 

  105. Guo JC, Xu YH, Wang CS. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011;11(10):4288.

    Article  Google Scholar 

  106. Zeng L, Jiang Y, Xu J, Wang M, Li W, Yu Y. Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li–S batteries. Nanoscale. 2015;7(25):10940.

    Article  Google Scholar 

  107. Chen YM, Li XY, Park KS, Hong JH, Song J, Zhou LM, Mai YW, Huang HT, Goodenough JB. Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium sulfur batteries. J Mater Chem A. 2014;2(26):10126.

    Article  Google Scholar 

  108. Wu C, Fu L, Maier J, Yu Y. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. J Mater Chem A. 2015;3(18):9438.

    Article  Google Scholar 

  109. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc. 2012;134(45):18510.

    Article  Google Scholar 

  110. Yin YX, Xin S, Guo YG, Wan LJ. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed. 2013;52(50):13186.

    Article  Google Scholar 

  111. Liu Y, Zhao XH, Chauhan GS, Ahn JH. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries. Appl Surf Sci. 2016;380:151.

    Article  Google Scholar 

  112. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed. 2012;51(15):3591.

    Article  Google Scholar 

  113. Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater. 2013;3(2):10920.

    Google Scholar 

  114. Oschatz M, Lee JT, Kim H, Nickel W, Borchardt L, Cho WI, Ziegler C, Kaskel S, Yushin G. Micro-and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes. J Mater Chem A. 2014;2(41):17649.

    Article  Google Scholar 

  115. He G, Mandlmeier B, Schuster J, Nazar LF, Bein T. Bimodal mesoporous carbon nanofibers with high porosity: freestanding and embedded in membranes for lithium–sulfur batteries. Chem Mater. 2014;26(13):3879.

    Article  Google Scholar 

  116. Neto AC, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109.

    Article  Google Scholar 

  117. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature. 2006;442(7100):282.

    Article  Google Scholar 

  118. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644.

    Article  Google Scholar 

  119. Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium–sulfur battery. Nano Energy. 2015;11:678.

    Article  Google Scholar 

  120. Rao M, Song X, Cairns EJ. Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. J Power Sour. 2012;205:474.

    Article  Google Scholar 

  121. Wang JL, Yang J, Xie JY, Xu NX. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater. 2002;14(13–14):963.

    Article  Google Scholar 

  122. Yu X-G, Xie J-Y, Yang J, Huang H-J, Wang K, Wen Z-S. Lithium storage in conductive sulfur-containing polymers. J Electroanal Chem. 2004;573(1):121.

    Google Scholar 

  123. Lee J, Choi W. Surface modification of sulfur cathodes with PEDOT:PSS conducting polymer in lithium–sulfur batteries. J Electrochem Soc. 2015;162(6):A935.

    Article  Google Scholar 

  124. Ma GQ, Wen ZY, Jin J, Lu Y, Wu XW, Wu MF, Chen CH. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium–sulfur batteries. J Mater Chem A. 2014;2(27):10350.

    Article  Google Scholar 

  125. Wu F, Wu SX, Chen RJ, Chen JZ, Chen S. Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries. Electrochem Solid State Lett. 2010;13(4):A29.

    Article  Google Scholar 

  126. Chen HW, Dong WL, Ge J, Wang CH, Wu XD, Lu W, Chen LW. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 2013;3(5):1910.

    Article  Google Scholar 

  127. Zhang Z, Li Q, Zhang K, Chen W, Lai YQ, Li J. Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium–sulfur batteries. J Power Sour. 2015;290:159.

    Article  Google Scholar 

  128. Pang Q, Kundu D, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat Commun. 2014;5(4759):5759.

    Google Scholar 

  129. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun. 2015;6(5682):6682.

    Google Scholar 

  130. Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed. 2015;54(13):3907.

    Article  Google Scholar 

  131. Zu CX, Klein M, Manthiram A. Activated Li2S as a high-performance cathode for rechargeable lithium–sulfur batteries. J Phys Chem Lett. 2014;5(22):3986.

    Article  Google Scholar 

  132. Wang L, Wang YG, Xia YY. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ Sci. 2015;8(5):1551.

    Article  Google Scholar 

  133. Nagao M, Hayashi A, Tatsumisago M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta. 2011;56(17):6055.

    Article  Google Scholar 

  134. Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sour. 2008;183(1):422.

    Article  Google Scholar 

  135. Hoang VC, Do V, Nah IW, Lee C, Cho WI, Oh IH. Facile coating of graphene interlayer onto Li2S as a high electrochemical performance cathode for lithium sulfur battery. Electrochim Acta. 2016;210:1.

    Article  Google Scholar 

  136. Meng XB, Comstock DJ, Fister TT, Elam JW. Vapor-Phase atomic-controllable growth of amorphous Li2S for high-performance lithium–sulfur batteries. ACS Nano. 2014;8(10):10963.

    Article  Google Scholar 

  137. Kaiser MR, Liang X, Liu HK, Dou SX, Wang JZ. A methodical approach for fabrication of binder-free Li2S–C composite cathode with high loading of active material for Li–S battery. Carbon. 2016;103:163.

    Article  Google Scholar 

  138. Wu M, Cui Y, Fu Y. Li2S nanocrystals confined in free-standing carbon paper for high performance lithium–sulfur batteries. ACS Appl Mater Interfaces. 2015;7(38):21479.

    Article  Google Scholar 

  139. Nan C, Lin Z, Liao H, Song MK, Li Y, Cairns EJ. Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells. J Am Chem Soc. 2014;136(12):4659.

    Article  Google Scholar 

  140. Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang YH, Zhang JG. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.

    Article  Google Scholar 

  141. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6(8058):9058.

    Google Scholar 

  142. Lee YM, Choi NS, Park JH, Park JK. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sour. 2003;119:964.

    Article  Google Scholar 

  143. Demir-Cakan R, Morcrette M, Gangulibabu, Gueguen A, Dedryvere R, Tarascon JM. Li–S batteries: simple approaches for superior performance. Energy Environ Sci. 2013;6(1):176.

    Article  Google Scholar 

  144. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010;10(4):1486.

    Article  Google Scholar 

  145. Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed. 2010;49(13):2371.

    Article  Google Scholar 

  146. Yan Y, Yin YX, Xin S, Su J, Guo YG, Wan LJ. High-safety lithium–sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochim Acta. 2013;91:58.

    Article  Google Scholar 

  147. Chung SH, Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chem Commun. 2014;50(32):4184.

    Article  Google Scholar 

  148. Su YS, Fu YZ, Cochell T, Manthiram A. A strategic approach to recharging lithium–sulphur batteries for long cycle life. Nat Commun. 2013;4(2985):3985.

    Google Scholar 

  149. Wang J, Yao Z, Monroe CW, Yang J, Nuli Y. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv Funct Mater. 2013;23(9):1194.

    Article  Google Scholar 

  150. Zeng L, Yao Y, Shi J, Jiang Y, Li W, Gu L, Yu Y. A flexible S1−x Sex@porous carbon nanofibers (x ≤ 0.1) thin film with high performance for Li–S batteries and room-temperature Na–S batteries. Energy Storage Mater. 2016;5:50.

    Article  Google Scholar 

  151. Liu Z, Zhang XH, Lee CS. A stable high performance Li–S battery with a polysulfide ion blocking layer. J Mater Chem A. 2014;2(16):5602.

    Article  Google Scholar 

  152. Azimi N, Xue Z, Rago ND, Takoudis C, Gordin ML, Song J, Wang D, Zhang Z. Fluorinated electrolytes for Li–S battery: suppressing the self-discharge with an electrolyte containing fluoroether solvent. J Electrochem Soc. 2014;162(1):A64.

    Article  Google Scholar 

  153. Ye H, Yin Y-X, Zhang S-F, Guo Y-G. Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries. J Mater Chem A. 2014;2(33):13293.

    Article  Google Scholar 

  154. Wang H, Li S, Chen Z, Liu HK, Guo Z. A novel type of one-dimensional organic selenium-containing fiber with superior performance for lithium–selenium and sodium–selenium batteries. RSC Adv. 2014;4(106):61673.

    Article  Google Scholar 

  155. Cui Y, Abouimrane A, Sun CJ, Ren Y, Amine K. Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chem Commun (Camb). 2014;50(42):5576.

    Article  Google Scholar 

  156. Huang DK, Li SH, Luo YP, Xiao X, Gao L, Wang MK, Shen Y. Graphene oxide-protected three dimensional Se as a binder-free cathode for Li–Se battery. Electrochim Acta. 2016;190:258.

    Article  Google Scholar 

  157. Liu T, Dai CL, Jia M, Liu DY, Bao SJ, Jiang J, Xu MW, Li CM. Selenium embedded in metal-organic framework derived hollow hierarchical porous carbon spheres for advanced lithium–selenium batteries. ACS Appl Mater Interfaces. 2016;8(25):16063.

    Article  Google Scholar 

  158. Liu YX, Si L, Du YC, Zhou XS, Dai ZH, Bao JC. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium–selenium batteries. J Phys Chem C. 2015;119(49):27316.

    Article  Google Scholar 

  159. Azimi N, Xue Z, Rago ND, Takoudis C, Gordin ML, Song J, Wang D, Zhang Z. Fluorinated electrolytes for Li–S battery: suppressing the self-discharge with an electrolyte containing fluoroether solvent. J Electrochem Soc. 2015;162(1):95.

    Google Scholar 

  160. Zhao-Karger Z, Lin XM, Minella CB, Wang D, Diemant T, Behm RJ, Fichtner M. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries. J Power Sour. 2016;323:213.

    Article  Google Scholar 

  161. Zheng C, Liu MY, Chen WQ, Zeng LX, Wei MD. An in situ formed Se/CMK-3 composite for rechargeable lithium-ion batteries with long-term cycling performance. J Mater Chem A. 2016;4(35):13646.

    Article  Google Scholar 

  162. Li XN, Liang JW, Hou ZG, Zhang WQ, Wang Y, Zhu YC, Qian YT. A new salt-baked approach for confining selenium in metal complex-derived porous carbon with superior lithium storage properties. Adv Funct Mater. 2015;25(32):5229.

    Article  Google Scholar 

  163. Peng X, Wang L, Zhang XM, Gao B, Fu JJ, Xiao S, Huo KF, Chu PK. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium–selenium battery cathode. J Power Sour. 2015;288:214.

    Article  Google Scholar 

  164. Qu YH, Zhang ZA, Lai YQ, Liu YX, Li J. A bimodal porous carbon with high surface area supported selenium cathode for advanced Li–Se batteries. Solid State Ion. 2015;274:71.

    Article  Google Scholar 

  165. Sun KL, Zhao HB, Zhang SQ, Yao J, Xu JQ. Selenium/pomelo peel-derived carbon nanocomposite as advanced cathode for lithium–selenium batteries. Ionics. 2015;21(9):2477.

    Article  Google Scholar 

  166. Zhang JJ, Xu YH, Fan L, Zhu YC, Liang JW, Qian YT. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li–Se batteries. Nano Energy. 2015;13:592.

    Article  Google Scholar 

  167. You Y, Zeng W, Yin Y-X, Zhang J, Yang C-P, Zhu Y, Guo Y-G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J Mater Chem A. 2015;3(9):4255.

    Article  Google Scholar 

  168. Zhou XM, Gao P, Sun SC, Bao D, Wang Y, Li XB, Wu TT, Chen YJ, Yang PP. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (De)lithiation mechanisms. Chem Mater. 2015;27(19):6730.

    Article  Google Scholar 

  169. Wu C, Yuan L, Li Z, Yi Z, Zeng R, Li Y, Huang Y. High-performance lithium–selenium battery with Se/microporous carbon composite cathode and carbonate-based electrolyte. Sci China Mater. 2015;58(2):91.

    Article  Google Scholar 

  170. Zeng L, Wei X, Wang J, Jiang Y, Li W, Yu Y. Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries. J Power Sour. 2015;281:461.

    Article  Google Scholar 

  171. Li X, Liang J, Zhang K, Hou Z, Zhang W, Zhu Y, Qian Y. Amorphous S-rich S1−x Se x /C (x ≤ 0.1) composites promise better lithium–sulfur batteries in a carbonate-based electrolyte. Energy Environ Sci. 2015;8(11):96146.

    Google Scholar 

  172. Jiang Y, Ma XJ, Feng JK, Xiong SL. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries. J Mater Chem A. 2015;3(8):4539.

    Article  Google Scholar 

  173. Lee JT, Kim H, Oschatz M, Lee DC, Wu FX, Lin HT, Zdyrko B, Cho WI, Kaskel S, Yushin G. Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium selenium batteries. Adv Energy Mater. 2015;5(1):1614.

    Article  Google Scholar 

  174. Li J, Zhao XX, Zhang Z, Lai YQ. Facile synthesis of hollow carbonized polyaniline spheres to encapsulate selenium for advanced rechargeable lithium–selenium batteries. J Alloys Compd. 2015;619:794.

    Article  Google Scholar 

  175. Li ZQ, Yin LW. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li–Se batteries with superior storage capacity and perfect cycling stability. Nanoscale. 2015;7(21):9597.

    Article  Google Scholar 

  176. Liu L, Wei YJ, Zhang CF, Zhang C, Li X, Wang JT, Ling LC, Qiao WM, Long DH. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping. Electrochim Acta. 2015;153:140.

    Article  Google Scholar 

  177. Liu T, Zhang Y, Hou JK, Lu SY, Jiang J, Xu MW. High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries. RSC Adv. 2015;5(102):84038.

    Article  Google Scholar 

  178. Yang CP, Yin YX, Guo YG. Elemental selenium for electrochemical energy storage. J Phys Chem Lett. 2015;6(2):256.

    Article  Google Scholar 

  179. Zeng LC, Zeng WC, Jiang Y, Wei X, Li WH, Yang CL, Zhu YW, Yu Y. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv Energy Mater. 2015;5(4):1614.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373195 and 51622210) and the Fundamental Research Funds for the Central Universities (No. WK3430000004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, LC., Li, WH., Jiang, Y. et al. Recent progress in Li–S and Li–Se batteries. Rare Met. 36, 339–364 (2017). https://doi.org/10.1007/s12598-017-0891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0891-z

Keywords

Navigation