Skip to main content
Log in

Application of minimum relative entropy theory for streamflow forecasting

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper develops and applies the minimum relative entropy (MRE) theory with spectral power as a random variable for streamflow forecasting. The MRE theory consists of (1) hypothesizing a prior probability distribution for the random variable, (2) determining the spectral power distribution, (3) extending the autocorrelation function, and (4) doing forecasting. The MRE theory was verified using streamflow data from the Mississippi River watershed. The exponential distribution was chosen as a prior probability in applying the MRE theory by evaluating the historical data of the Mississippi River. If no prior information is given, the MRE theory is equivalent to the Burg entropy (BE) theory. The spectral density obtained by the MRE theory led to higher resolution than did the BE theory. The MRE theory did not miss the largest peak at 1/12th frequency, which is the main periodicity of streamflow of the Mississippi River, but the BE theory sometimes did. The MRE theory was found to be capable of forecasting monthly streamflow with a lead time from 12 to 48 months. The coefficient of determination (r 2) between observed and forecasted stream flows was 0.912 for Upper Mississippi River and was 0.855 for Lower Mississippi River. Both MRE and BE theories were generally more reliable and had longer forecasting lead times than the autoregressive (AR) method. The forecasting lead time for MRE and BE could be as long as 48–60 months, while it was less than 48 months for the AR method. However, BE was comparable to MRE only when observations fitted the AR process well. The MRE theory provided more reliable forecasts than did the BE theory, and the advantage of using MRE is more significant for downstream flows with irregular flow patterns or where the periodicity information is limited. The reliability of monthly streamflow forecasting was the highest for MRE, followed by BE followed by AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamowski JF (2008) River flow forecasting using wavelet and cross-wavelet transform models. Hydrol Process 22:4877–4891. doi:10.1002/hyp.7107

    Article  Google Scholar 

  • Adamowski J, Prokoph A (2014) Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach. Hydrol Process 28:2782–2793

    Article  Google Scholar 

  • Andreo B, Jimenez P, Duran JJ, Carrasco F, Vadillo I, Mangin A (2006) Climatic and hydrological variations during the last 117-166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous wavelet analyses. J Hydrol 324:24–39

    Article  Google Scholar 

  • Baldwin CK, Lall U (1999) Seasonality of streamflow: the upper Mississippi River. Water Resour Res 35:1143–1154

    Article  Google Scholar 

  • Berger A, Melice JL, Van Der Mooren I, Beran A, Provenzale A, Stanford JL (1990) Evolutive spectral analysis of sunspot data over the past 300 years [and discussion]. Phil Trans R Soc A 330:529–541

    Article  Google Scholar 

  • Boshnakov GN, Lambert-Lacroix S (2012) A periodic Levinson-Durbin algorithm for entropy maximization. Comput Stat Data Anal 56:15–24. doi:10.1016/j.csda.2011.07.001

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control. Holden-Day series in time series analysis. Holden-Day, San Francisco

    Google Scholar 

  • Burg JP (1967) Maximum entropy spectral analysis. In: Proceedings of 37th meeting of society exploration geophysics, pp 34–41

  • Burg JP (1975) Maximum entropy spectral analysis. Ph.D., Stanford University

  • Cengiz TM (2011) Periodic structures of Great Lakes levels using wavelet analysis. J Hydrol Hydromech 59:24–35

    Article  Google Scholar 

  • Chiew FHS, McMahon TA (2002) Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrolog Sci J 47:505–522

    Article  Google Scholar 

  • Cui H, Singh VP (2015) Configurational entropy theory for streamflow forecasting. J Hydrol 521:1–17. doi:10.1016/j.jhydrol.2014.11.065

    Article  Google Scholar 

  • Cui H, Singh VP (2016) Maximum entropy spectral analysis for streamflow forecasting. Physica A 442:91–99. doi:10.1016/j.physa.2015.08.060

    Article  Google Scholar 

  • Durdu OF (2010) Application of linear stochastic models for drought forecasting in the Buyuk Menderes river basin, western Turkey. Stoch Environ Res Risk A 24:1145–1162. doi:10.1007/s00477-010-0366-3

    Article  Google Scholar 

  • Endo H, Randall RB (2007) Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter. Mech Syst Signal Process 21:906–919

    Article  Google Scholar 

  • Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics Nat. Clim Change 3:811–815

    Article  Google Scholar 

  • Fernandez C, Vega JA, Fonturbel T, Jimenez E (2009) Streamflow drought time series forecasting: a case study in a small watershed in North West Spain. Stoch Environ Res Risk A 23:1063–1070

    Article  Google Scholar 

  • Fleming SW, Lavenue AM, Aly AH, Adams A (2002) Practical applications of spectral analysis to hydrologic time series. Hydrol Process 16:565–574

    Article  Google Scholar 

  • Ghil M et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1003. doi:10.1029/2000rg000092

    Article  Google Scholar 

  • Gray RM, Gray AH, Rebolledo G, Shore JE (1981) Rate-distortion speech coding with a minimum discrimination information distortion measure. IEEE Trans Inf Theory 27:708–721

    Article  Google Scholar 

  • Hameed S (1984) Fourier-analysis of nile flood levels. Geophys Res Lett 11:843–845

    Article  Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. In: Developments in water science, vol 45. Elsevier, New York

  • Hou ZS, Rubin Y (2005) On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward modeling. Water Resour Res 41

  • Jimenez C, Mcleod AI, Hipel KW (1989) Kalman filter estimation for periodic autoregressive-moving average models. Stoch Hydrol Hydraul 3:227–240

    Article  Google Scholar 

  • Kalman PE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 83D:95–108

    Google Scholar 

  • Kisi O (2009) Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J Hydrol Eng 14:773–782. doi:10.1061/(asce)he.1943-5584.0000053

    Article  Google Scholar 

  • Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353. doi:10.1016/j.jhydrol.2010.06.013

    Article  Google Scholar 

  • Krstanovic PF, Singh VP (1991a) A univariate model for long-term streamflow forecasting.1. Dev Stoch Hydrol Hydraul 5:173–188

    Article  Google Scholar 

  • Krstanovic PF, Singh VP (1991b) A univariate model for long-term streamflow forecasting.2. Appl Stoch Hydrol Hydraul 5:189–205

    Article  Google Scholar 

  • Kuhnel I, Mcmahon TA, Finlayson BL, Haines A, Whetton PH, Gibson TT (1990) Climatic influences on streamflow variability—a comparison between Southeastern Australia and Southeastern United-States-of-America. Water Resour Res 26:2483–2496

    Article  Google Scholar 

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    Google Scholar 

  • Labat D (2005) Recent advances in wavelet analyses: Part I. A review of concepts. J Hydrol 314:275–288

    Article  Google Scholar 

  • Labat D, Ronchail J, Guyot JL (2005) Recent advances in wavelet analyses: Part 2—Amazon, Parana, Orinoco and Congo discharges time scale variability. J Hydrol 314:289–311

    Article  Google Scholar 

  • Liefhebber F, Boekee DE (1987) Minimum information spectral-analysis. Signal Process 12:243–255

    Article  Google Scholar 

  • Marques CAF, Ferreira JA, Rocha A, Castanheira JM, Melo-Goncalves P, Vaz N, Dias JM (2006) Singular spectrum analysis and forecasting of hydrological time series. Phys Chem Earth 31:1172–1179. doi:10.1016/j.pce.2006.02.061

    Article  Google Scholar 

  • Mishra AK, Desai V (2005) Drought forecasting using stochastic models. Stoch Environ Res Risk A 19:326–339

    Article  Google Scholar 

  • Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk A 21:223–233

    Article  Google Scholar 

  • Molenat J, Davy P, Gascuel-Odoux C, Durand P (1999) Study of three subsurface hydrologic systems based on spectral and cross-spectral analysis of time series. J Hydrol 222:152–164. doi:10.1016/S0022-1694(99)00107-9

    Article  Google Scholar 

  • Moss ME, Bryson MC (1974) Autocorrelation structure of monthly streamflows. Water Resour Res 10:737–744

    Article  Google Scholar 

  • Nasrollahi N et al (2015) How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour Res 51:2847–2864. doi:10.1002/2014WR016318

    Article  Google Scholar 

  • Noakes DJ, McLeod AI, Hipel KW (1985) Forecasting monthly riverflow time series. Int J Forecast 1:179–190

    Article  Google Scholar 

  • Papademetriou RC (1998) Experimental comparison of two information-theoretic spectral estimators. In: Signal processing proceedings, vol 141, pp 141–144. ICSP ‘98. Fourth international conference, 1998. doi:10.1109/ICOSP.1998.770170

  • Pramanik N, Panda RK, Singh A (2011) Daily river flow forecasting using wavelet ANN hybrid models. J Hydroinf 13:49–63. doi:10.2166/hydro.2010.040

    Article  Google Scholar 

  • Prokoph A, Adamowski J, Adamowski K (2012) Influence of the 11 year solar cycle on annual streamflow maxima in Southern Canada. J Hydrol 442:55–62

    Article  Google Scholar 

  • Rohr T, Manzoni S, Feng X, Menezes RSC, Porporato A (2013) Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J Geophys Res 118:1156–1167. doi:10.1002/jgrg.20091

    Article  CAS  Google Scholar 

  • Salas JD, Boes DC, Smith RA (1982) Estimation of ARMA models with seasonal parameters. Water Resour Res 18:1006–1010. doi:10.1029/Wr018i004p01006

    Article  Google Scholar 

  • Sang YF, Wang D, Wu JC, Zhu QP, Wang L (2009) The relation between periods’ identification and noises in hydrologic series data. J Hydrol 368:165–177. doi:10.1016/j.jhydrol.2009.01.042

    Article  Google Scholar 

  • Sang YF, Wang ZG, Liu CM (2012) Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. J Hydrol 424:154–164. doi:10.1016/j.jhydrol.2011.12.044

    Article  Google Scholar 

  • Schroeder MR (1982) Linear prediction, extermal entropy and prior information in speech signal analysis and synthesis. Speech Commun 1:9–20. doi:10.1016/0167-6393(82)90004-8

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. At&T Tech J 27(4):623–656

    Google Scholar 

  • Sharma A (2000) Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3—a nonparametric probabilistic forecast model. J Hydrol 239:249–258

    Article  Google Scholar 

  • Sharma A, O’Neill R (2002) A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resour Res 38:1100. doi:10.1029/2001WR000953

    Article  Google Scholar 

  • Sharma A, Tarboton D, Lall U (1997) Streamflow simulation: a nonparametric approach. Water Resour Res 33:291–308. doi:10.1029/96WR02839

    Article  Google Scholar 

  • Sharma A, Luk KC, Cordery I, Lall U (2000) Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 2—Predictor identification of quarterly rainfall using ocean-atmosphere information. J Hydrol 239:240–248

    Article  Google Scholar 

  • Shiri J, Kisi O (2010) Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J Hydrol 394:486–493. doi:10.1016/j.jhydrol.2010.10.008

    Article  Google Scholar 

  • Shore JE (1979) Minimum cross-entropy spectral analysis. Naval Research Laboratory, Washington, DC

    Google Scholar 

  • Shore JE (1981) Minimum cross-entropy spectral-analysis. IEEE Trans Acoust Speech 29:230–237

    Article  Google Scholar 

  • Shore JE, Gray RM (1982) Minimum cross-entropy pattern-classification and cluster-analysis. IEEE Trans Pattern Anal 4:11–17

    Article  CAS  Google Scholar 

  • Singh VP (1997) The use of entropy in hydrology and water resources. Hydrol Process 11:587–626

    Article  Google Scholar 

  • Smith LC, Turcotte DL, Isacks BL (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12:233–249

    Article  Google Scholar 

  • Wang QJ, Robertson DE, Chiew FHS (2009) A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45

  • Westra S, Sharma A, Brown C, Lall U (2008) Multivariate streamflow forecasting using independent component analysis. Water Resour Res 44

  • Woodbury AD (2004) A FORTRAN program to produce minimum relative entropy distributions. Comput Geosci-Uk 30:131–138. doi:10.1016/j.cageo.2003.09.001

    Article  Google Scholar 

  • Woodbury AD (2011) Minimum relative entropy, Bayes and Kapur. Geophys J Int 185:181–189. doi:10.1111/j.1365-246X.2011.04932.x

    Article  Google Scholar 

  • Woodbury AD, Ulrych TJ (1993) Minimum relative entropy—forward probabilistic modeling. Water Resour Res 29:2847–2860

    Article  Google Scholar 

  • Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32:2671–2681. doi:10.1029/95wr03818

    Article  CAS  Google Scholar 

  • Woodbury AD, Ulrych TJ (1998) Minimum relative entropy and probabilistic inversion in groundwater hydrology. Stoch Hydrol Hydraul 12:317–358

    Article  Google Scholar 

  • Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23:1350–1367

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45:W08432. doi:10.1029/2007wr006737

    Article  Google Scholar 

  • Yule GU (1927) On a method of investigating periodicities in disturbed series, with special reference to Wofer’s sunspot numbers. Philos Trans R Soc Lond 226:267–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Cui.

Appendices

Appendix 1: Posterior spectral density without prior information given

If no prior information is given, one can consider the uniform distribution as \(p(\mathop x\limits^{ \to } ) = C\)and let \(A = p(\mathop x\limits^{ \to } )\exp [ - \lambda_{0} ]\) in Eq. (14), then it becomes

$$q(\mathop x\limits^{ \to } ) = A\exp \left[ { - \sum\limits_{r = - N}^{N} {\lambda_{r} } \sum\limits_{k = - n}^{n} {x_{k} c_{rk} } } \right]$$
(35)

To simplify Eq. (35), let \(u_{k} = \sum\limits_{r = - N}^{N} {\lambda_{r} c_{rk} }\). Then, Eq. (35) becomes

$$q(\mathop x\limits^{ \to } ) = A\exp \left[ { - \sum\limits_{k = - n}^{n} {x_{k} \sum\limits_{r = - m}^{m} {\lambda_{r} } c_{rk} } } \right] = A\exp \left[ { - \sum\limits_{k = - n}^{n} {u_{k} x_{k} } } \right]$$
(36)

Integrating Eq. (36) over 0 to infinite yields

$$1 = \int\limits_{0}^{\infty } {q(\mathop x\limits^{ \to } )d} \mathop x\limits^{ \to } = \iiint {A\exp \left[ { - \sum\limits_{k = - n}^{n} {u_{k} x_{k} } } \right]}dx_{k} = A\prod\limits_{k = 1}^{n} {\int {\exp ( - u_{k} x_{k} )} dx_{k} } = A\prod\limits_{k = 1}^{n} {\frac{1}{{u_{k} }}}$$
(37)

for \(\int {\exp ( - u_{k} x_{k} )} dx_{k} = - \frac{1}{{u_{k} }}\exp ( - u_{k} x)\left| {_{0}^{\infty } } \right. = \frac{1}{{u_{k} }}\). Rearranging Eq. (37) yields

$$A = \prod\limits_{k} {u_{k} }$$
(38)

Thus, inputting Eq. (38) into Eq. (35), one obtains

$$q(\mathop x\limits^{ \to } ) = \prod\limits_{k = - n}^{n} {u_{k} \exp \left[ { - \sum\limits_{k = - n}^{n} {u_{k} x_{k} } } \right]} = \prod\limits_{k = - n}^{n} {u_{k} \exp [ - u_{k} x_{k} ]}$$
(39)

It is shown that Eq. (39) is a multivariate exponential distribution, where the probability of the spectral power at each frequency is \(q(x_{k} ) = u_{k} \exp [ - u_{k} x_{k} ]\). Thus, the expected spectral power at each frequency can be obtained as

$$\overline{{{\text{x}}_{k} }} = \int {x_{k} q(} x_{k} )dx_{k} = \int {x_{k} } u_{k} \exp [ - u_{k} x_{k} ]dx_{k} = \frac{1}{{u_{k} }} = \frac{1}{{\sum\limits_{r = - N}^{N} {\lambda_{r} c_{rk} } }}$$
(40)

which is equivalent to the Burg entropy.

Appendix 2: Posterior spectral density with exponential prior distribution

If prior information points to an exponential distribution, with the expected spectrum power S k for each frequency, then the prior becomes

$$p(\mathop x\limits^{ \to } ) = \prod\limits_{k} {\frac{1}{{S_{k} }}\exp \left( { - \frac{{x_{k} }}{{S_{k} }}} \right)}$$
(41)

Inputting Eq. (41) into the posterior distribution Eq. (14), the result becomes

$$\begin{aligned} q(\mathop x\limits^{ \to } ) & = p(\mathop x\limits^{ \to } )\exp \left[ { - \lambda_{0} - \sum\limits_{r = - N}^{N} {\lambda_{r} } \sum\limits_{k = - n}^{n} {x_{k} c_{rk} } } \right] \\ & = \exp ( - \lambda_{0} )\prod\limits_{k} {\frac{1}{{S_{k} }}\exp \left( { - \frac{{x_{k} }}{{S_{k} }}} \right)} \exp \left[ { - \sum\limits_{r = - N}^{N} {\lambda_{r} c_{rk} x_{k} } } \right] \\ & = \exp ( - \lambda_{0} )\prod\limits_{k} {\frac{1}{{S_{k} }}\exp \left( { - \left( {u_{k} + \frac{1}{{S_{k} }}} \right)x_{k} } \right)} \\ \end{aligned}$$
(42)

where \(u_{k} = \sum\limits_{r = - N}^{N} {\lambda_{r} c_{rk} }\), the same as previously defined. It can be seen from Eq. (42) that the posterior distribution of spectral power is in the form that is transformable to the exponential distribution of \(\eta \exp ( - \eta x)\), where \(u_{k} + \frac{1}{{S_{k} }}\) can be considered as the exponential parameter of each distribution. Thus, λ0 needs to satisfy that \(\exp ( - \lambda_{0} )\prod\limits_{k} {\frac{1}{{S_{k} }}} = \prod\limits_{k} {u_{k} + \frac{1}{{S_{k} }}}\) so that Eq. (42) forms the multivariate exponential distribution as

$$q(\mathop x\limits^{ \to } ) = \prod\limits_{k = 1}^{n} {\left( {u_{k} + \frac{1}{{S_{k} }}} \right)\exp } \left[ { - \left( {u_{k} + \frac{1}{{S_{k} }}} \right)x_{k} } \right]$$
(43)

and the posterior distribution of each frequency is

$$q(x_{k} ) = \left( {u_{k} + \frac{1}{{S_{k} }}} \right)\exp \left[ { - \left( {u_{k} + \frac{1}{{S_{k} }}} \right)x_{k} } \right]$$
(44)

Thus, the expected posterior power spectral power at each frequency becomes

$$\overline{{x_{k} }} = \int {x_{k} q(} x_{k} )dx_{k} = \int {x_{k} } \left( {u_{k} + \frac{1}{{S_{k} }}} \right)\exp \left[ { - \left( {u_{k} + \frac{1}{{S_{k} }}} \right)x_{k} } \right]dx_{k} = \frac{1}{{\frac{1}{{S_{k} }} + \sum\limits_{r = - N}^{N} {\lambda_{r} c_{rk} } }}$$
(45)

Appendix 3: Linear extension of autocovariance

Recall that in time series, the AR process or the linear prediction process has the spectral density in the form of

$$T(f) = \frac{{\sigma^{2} }}{{\left| {1 + \sum\limits_{n = - N}^{N} {a_{n} z^{n} } } \right|^{2} }} = \frac{{\sigma^{2} }}{{\sum\limits_{n = 0}^{N} {a_{s} z^{n} } \sum\limits_{n = 0}^{N} {a_{n}^{*} z^{ - n} } }}$$
(46)

Taking the inverse Fourier transformation of Eq. (46), one obtains the autocovariance function like in Eq. (7) as

$$\begin{aligned}R_{r} = &\int {T(f)} \exp (2\pi ir\Delta tf) = \frac{{\sigma^{2} }}{2\pi i}\oint {\frac{{z^{ - r - 1} dz}}{{\sum\limits_{n = 0}^{N} {a_{n} z^{n} } \sum\limits_{n = 0}^{N} {a_{n}^{*} z^{ - n} } }}},\\ &- N < n < N \end{aligned}$$
(47)

Multiplying Eq. (47) by a * r and summing up for n from 0 to N,

$$\sum\limits_{r = 0}^{N} {a_{r}^{*} R_{N - r} = \frac{{\sigma^{2} }}{2\pi i}\oint {\frac{{z^{r - 1} dz\sum\limits_{n = 0}^{N} {a_{n}^{*} z^{ - n} } }}{{\sum\limits_{n = 0}^{N} {a_{n} z^{n} } \sum\limits_{n = 0}^{N} {a_{n}^{*} z^{ - n} } }}} } = \frac{{\sigma^{2} }}{2\pi i}\oint {\frac{{z^{r - 1} dz}}{{\sum\limits_{n = 0}^{N} {a_{n} z^{n} } }}}$$
(480)

It is noted from Cauchy’s integral formula that

$$\oint {n\frac{{z^{r - 1} dz}}{{\sum\limits_{s = 0}^{N} {a_{n} z^{n} } }}} = \left\{ {\begin{array}{*{20}c} {2\pi i} \\ 0 \\ \end{array} } \right.\begin{array}{*{20}c} , & {r = 0} \\ , & {r \ge 1} \\ \end{array}$$
(49)

Thus, integrating of Eq. (49) using Cauchy’s formula, one obtains

$$\sum\limits_{r = 0}^{N} {a_{r}^{*} R_{N - r} = \frac{{\sigma^{2} }}{2\pi i}\oint {\frac{{z^{r - 1} dz}}{{\sum\limits_{n = 0}^{N} {a_{n} z^{n} } }}} = \frac{{\sigma^{2} }}{2\pi i}2\pi i = \sigma^{2} \begin{array}{*{20}c} , & {r = 0} \\ \end{array} }$$
(50a)
$$\sum\limits_{r = 0}^{N} {a_{r}^{*} R_{N - r} = \frac{{\sigma^{2} }}{2\pi i}\oint {\frac{{z^{r - 1} dz}}{{\sum\limits_{n = 0}^{N} {a_{n} z^{n} } }}} = \frac{{\sigma^{2} }}{2\pi i}0 = 0\begin{array}{*{20}c} , & {r \ge 1} \\ \end{array} }$$
(50b)

Taking the conjugate of Eq. (50a, b) yields

$$\sum\limits_{n = 0}^{N} {R_{r - n} a_{n} = \sigma^{2} \begin{array}{*{20}c} , & {r = 0} \\ \end{array} }$$
(51a)
$$\sum\limits_{n = 0}^{N} {R_{r - n} a_{n} = 0\begin{array}{*{20}c} , & {r \ge 1} \\ \end{array} }$$
(51b)

which can be written in the matrix form as:

$$\left[ {\begin{array}{*{20}c} {R_{0} } & {R_{ - 1} } & \cdots & {R_{ - N} } \\ {R_{1} } & {R_{0} } & {} & {R_{1 - N} } \\ \vdots & \vdots & {} & \vdots \\ {R_{N} } & {R_{N - 1} } & \cdots & {R_{0} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} 1 \\ {a_{1} } \\ \vdots \\ {a_{N} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\sigma^{2} } \\ 0 \\ \vdots \\ 0 \\ \end{array} } \right\}$$
(52)

Equation (52) is the Yule-Walker equation (Yule 1927), with coefficient a n and gain σ 2, and according to the linear extension, the N + 1th autocovariance can be obtained by

$$R_{N + 1} = a_{1} R_{N} + a_{2} R_{N - 1} + \cdots + a_{m} R_{N + m - 1}$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Singh, V.P. Application of minimum relative entropy theory for streamflow forecasting. Stoch Environ Res Risk Assess 31, 587–608 (2017). https://doi.org/10.1007/s00477-016-1306-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1306-7

Keywords

Navigation