Skip to main content
Log in

Millipede Defensive Compounds Are a Double-Edged Sword: Natural History of the Millipede-Parasitic Genus Myriophora Brown (Diptera: Phoridae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Toxic defensive secretions produced by millipedes in the orders Julida, Spirobolida, Spirostreptida, and Polydesmida are highly repellent to most vertebrate and invertebrate natural enemies, but a few insects have evolved mechanisms to overcome these defenses. We demonstrate that highly specialized parasitic phorid flies in the species-rich genus Myriophora use volatile millipede defensive compounds as kairomones for host location. Of the two predominant quinone components in the defensive blend of juliform millipedes, 2-methoxy-3-methyl-1,4-benzoquinone alone was sufficient to attract adult flies of both sexes; however, a combination of 2-methoxy-3-methyl-1,4-benzoquinone and 2-methyl-1,4-benzoquinone increased attractiveness nearly threefold. We further discuss oviposition behavior, adult and larval feeding habits, life history parameters, and the potential competitive interactions between phorid flies in the genus Myriophora and other millipede-associated insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldrich JM (1916) Sarcophaga and allies. Thomas Say Foundation, LaFayette, USA

    Google Scholar 

  • Bailey PT (1989) The millipede parasitoid Pelidnoptera nigripennis (F.) (Diptera: Sciomyzidae) for the biological control of the millipede Ommatoiulus moreleti (Lucas) (Diplopoda: Julida: Julidae) in Australia. Bull Entomol Res 79:381–391

    Article  Google Scholar 

  • Baker GH (1985) Parasites of the millipede Ommatoiulus moreletii (Lucus) (Diplopoda: Iulidae) in Portugal, and their potential as biological control agents in Australia. Aust J Zool 33:23–32

    Article  Google Scholar 

  • Banks N (1911) A curious habit of one of our phorid flies. Proc Entomol Soc Wash 13:212–214

    Google Scholar 

  • Bedoussac L, Favila M, López R (2007) Defensive volatile secretions of two diplopod species attract the carrion ball roller scarab Canthon morsei (Coleoptera: Scarabaeidae). Chemoecology 17:163–167. doi:10.1007/s00049-007-0375-y

    Article  CAS  Google Scholar 

  • Benelli G, Carpita A, Simoncini S, Raspi A, Canale A (2014) For sex and more: attraction of the tephritid parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to male sex pheromone of the olive fruit fly, Bactrocera oleae. J Pest Sci 87:449–457. doi:10.1007/s10340-014-0595-1

  • Birkinshaw CR (1999) Use of millipedes by black lemurs to anoint their bodies. Folia Primatol 70:170–171

    Article  CAS  PubMed  Google Scholar 

  • Borgmeier T (1961) Weitere Beitraege zur Kenntnis der neotropischen Phoriden, nebst Beschreibung einiger Dohrniphora-Arten aus der indo-australischen Region (Diptera, Phoridae). Studia Entomologica 4:1–112

    Google Scholar 

  • Brandão CRF, Diniz JLM, Tomotake EM (1991) Thaumatomyrmex strips millipedes for prey: a novel predatory behaviour in ants, and the first case of sympatry in the genus (Hymenoptera: Formicidae). Insect Soc 38:335–344

  • Brown BV (1992a) Life history, immature stages and undescribed male of Rhynchomicropteron (Diptera: Phoridae). J Nat Hist 26:407–416

    Article  Google Scholar 

  • Brown WL Jr (1992b) Two new species of Gnamptogenys, and an account of millipede predation by one of them. Psyche 99:275–290

    Article  Google Scholar 

  • Brown BV (1994) Life history parameters and new host records of phorid (Diptera: Phoridae) parasitoids of fireflies (Coleoptera: Lampyridae). Coleopt Bull 48:145–147

    Google Scholar 

  • Brown BV (2010) Phoridae (hump-backed flies, scuttle flies). In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (eds) Manual of Central American Diptera, vol 2. NRC Research Press, Ottawa, pp 725–761

  • Brown BV, Feener DH Jr (1991) Behavior and host location cues of Apocephalus paraponerae (Diptera: Phoridae), a parasitoid of the giant tropical ant, Paraponera clavata (hymenoptera: Formicidae). Biotropica:182–187

  • Brown BV, Feener DH Jr (1993) Life history and immature stages of Rhyncophoromyia maculineura, an ant-parasitizing phorid fly (Diptera: Phoridae) from Peru. J Nat Hist 27:429–434

    Article  Google Scholar 

  • Brues CT (1908) Some new north American Phoridae. J New York Entomol S 16:199–201

    Google Scholar 

  • Cano EB (1998) Deltochilum Valgum acropyge bates (Coleoptera: Scarabaeidae: Scarabaeinae): habits and distribution. Coleopt Bull 52:174–178

    Google Scholar 

  • Carreño MC, Ruano JG, Toledo MA, Urbano A (1997) ortho-directed metallation in the regiocontrolled synthesis of enantiopure 2-and/or 3-substituted (S) S-(p-tolylsulfinyl)-1,4-benzoquinones. Tet Asymm 8:913–921

    Article  Google Scholar 

  • Cusumano A, Weldegergis BT, Colazza S, Dicke M, Fatouros NM (2015) Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia. doi:10.1007/s00442-015-3325-3

    PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  CAS  Google Scholar 

  • Dejean A, Suzzoni JP, Schatz B (2001) Behavioral adaptations of an African ponerine ant in the capture of millipedes. Behaviour 138:981–996

    Article  Google Scholar 

  • Disney RHL (1994) Scuttle flies: the Phoridae. Chapman and Hall, London

    Book  Google Scholar 

  • Duffey SS, Blum MS, Fales HM, Evans SL, Roncadori RW, Tiemann DL, Nakagawa Y (1977) Benzoyl cyanide and mandelonitrile benzoate in the defensive secretions of millipedes. J Chem Ecol 3:101–113. doi:10.1007/BF00988137

    Article  CAS  Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos T Roy Soc B 337:1–20

    Article  Google Scholar 

  • Eisner T, Alsop D, Hicks K, Meinwald J (1978) Defensive secretions of millipedes. In: Arthropod venoms. Springer, Berlin, pp 41–72

  • Eisner T, Eisner M, Attygalle AB, Deyrup M, Meinwald J (1998) Rendering the inedible edible: circumvention of a millipede’s chemical defense by a predaceous beetle larva (Phengodidae). Proc Natl Acad Sci USA 95:1108–1113

  • Eisner T, Eisner M, Siegler MV (2005) Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. Harvard University Press, Cambridge

    Google Scholar 

  • Feener DH Jr, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97

    Article  CAS  PubMed  Google Scholar 

  • Forthman M, Weirauch C (2012) Toxic associations: a review of the predatory behaviors of millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae). Eur J Entomol 109:147–153

    Article  Google Scholar 

  • Frenzel M, Dettner K, Wirth D, Waibel J, Boland W (1992) Cantharidin analogues and their attractancy for ceratopogonid flies (Diptera: Ceratopogonidae). Experientia 48:106–111. doi:10.1007/BF01923620

    Article  CAS  Google Scholar 

  • Hash JM, Brown BV (2015) Revision of the new world species of the millipede-parasitic genus Myriophora Brown (Diptera: Phoridae). Zootaxa 4035:1–79

    Article  PubMed  Google Scholar 

  • Heraty J (2009) Parasitoid biodiversity and insect pest management. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley-Blackwell, Oxford, pp 445–462

    Chapter  Google Scholar 

  • Huth A (2000) Defensive secretions of millipedes: more than just a product of melting point decrease? Fragmenta Faunistica 43:191–200

    Google Scholar 

  • Jacobson M (1966) Chemical insect attractants and repellents. Annu Rev Entomol 11:403–422

    Article  CAS  PubMed  Google Scholar 

  • Knab F (1913) Some earlier observations on the habits of Aphiochaeta juli Brues. Insecutor Inscit Menstr l 1:24

    Google Scholar 

  • Knutson LV, Vala J-C (2011) Biology of snail-killing Sciomyzidae flies. Cambridge University Press, NY, USA

    Google Scholar 

  • Köpf A, Rank N, Roininen H, Tahvanainen J (1997) Defensive larval secretions of leaf beetles attract a specialist predator Parasyrphus nigritarsis. Ecol Entomol 22:176–183

    Article  Google Scholar 

  • Krell F-T, Schmitt T, Linsenmair KE (1997) Diplopod defensive secretions act as attractants for necrophagous scarab beetles (Diplopoda; Insecta, Coleoptera: Scrabaeidae). Entomol Scand Supp 51:281–285

    Google Scholar 

  • Kuwahara Y, Ômura H, Tanabe T (2002) 2-Nitroethenylbenzenes as natural products in millipede defense secretions. Naturwissenschaften 89:308–310

    Article  CAS  PubMed  Google Scholar 

  • Lakes-Harlan R, Lehmann GUC (2015) Parasitoid flies exploiting acoustic communication of insects—comparative aspects of independent functional adaptations. J Comp Physiol 201:123–132. doi:10.1007/s00359-014-0958-3

    Article  Google Scholar 

  • Larsen TH, Lopera A, Forsyth A, Génier F (2009) From coprophagy to predation: a dung beetle that kills millipedes. Biol Lett 5:152–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Maschwitz U, Weissflog A, Seebauer S, Disney RHL, Witte V (2008) Studies on European ant decapitating flies (Diptera: Phoridae): I. Releasers and phenology of parasitism of Pseudacteon formicarum. Sociobiology 51:127–140

    Google Scholar 

  • Morehead SA, Feener DH Jr (2000) Visual and chemical cues used in host location and acceptance by a dipteran parasitoid. J Insect Behav 13:613–625

    Article  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88:628–667. doi:10.1139/Z10-032

    Article  CAS  Google Scholar 

  • Noldus L, van Lenteren J, Lewis WJ (1991) How Trichogramma parasitoids use moth sex pheromones as kairomones: orientation behaviour in a wind tunnel. Physiol Entomol 16:313–327

    Article  Google Scholar 

  • Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612. doi:10.1023/A:1021400606217

    Article  PubMed  Google Scholar 

  • Pape T (1990) Revisionary notes on American Sarcophaginae (Diptera: Sarcophagidae). Tijdschrift voor Entomologie 133:43–74

    Google Scholar 

  • Peeters C, De Greef S (2015) Predation on large millipedes and self-assembling chains in Leptogenys ants from Cambodia. Insect Soc. doi:10.1007/s00040-015-0426-2

    Google Scholar 

  • Percy JE, Weatherston J (1971) Studies of physiologically active arthropod secretions. V. Histological studies of the defence mechanism of Narceus annularis (Raf.) (Diplopoda: Spirobolida). Can J Zool 49:278–279. doi:10.1139/z71-040

    Article  CAS  PubMed  Google Scholar 

  • Picard F (1930) Sur le parasitisme d’un phoride (Megaselia cuspidata Schmitz) aux depens d’un myriapode. Bull Soc Zool Fr 55:180–183

    Google Scholar 

  • Schmitt T, Krell F-T, Linsenmair KE (2004) Quinone mixture as attractant for necrophagous dung beetles specialized on dead millipedes. J Chem Ecol 30:731–740

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H (1939) A new species of Phoridae (Diptera) associated with millipedes, from the Yemen. Proc Royal Entomol Soc B 8:43–45. doi:10.1111/j.1365-3113.1939.tb01281.x

    Google Scholar 

  • Shear WA (2015) The chemical defenses of millipedes (Diplopoda): biochemistry, physiology and ecology. Biochem Syst Ecol 61:78–117. doi:10.1016/j.bse.2015.04.033

    Article  CAS  Google Scholar 

  • Shelley R, Golavatch S (2011) Atlas of myriapod biogeography. I. Indigenous ordinal and supra-ordinal distributions in the Diplopoda: perspectives on taxon origins and ages, and a hypothesis on the origin and early evolution of the class. Insecta Mundi 158:1–134

    Google Scholar 

  • Sierwald P, Bond JE (2007) Current status of the myriapod class Diplopoda (millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420. doi:10.1146/annurev.ento.52.111805.090210

    Article  CAS  PubMed  Google Scholar 

  • Stoepler TM, Disney RHL (2013) A new species of Megaselia Rondani (Diptera: Phoridae) reared from larvae of moths (Lepidoptera: Limacodidae). Proc Entomol Soc Wash 115:85–95. doi:10.4289/0013-8797.115.1.85

    Article  Google Scholar 

  • Stowe MK, Turlings TC, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci U S A 92:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujisić LV, Makarov SE, Ćurčić BP, Ilić BS, Tešević VV, Gođevac DM, Vučković IM, Ćurčić SB, Mitić BM (2011) Composition of the defensive secretion in three species of European millipedes. J Chem Ecol 37:1358–1364

    Article  PubMed  Google Scholar 

  • Weissflog A, Maschwitz U, Seebauer S, Disney RHL, Seifert B, Witte V (2008) Studies on European ant decapitating flies (Diptera: Phoridae): II. Observations that contradict the reported catholicity of host choice by Pseudacteon formicarum. Sociobiology 51:87–94

    Google Scholar 

  • Weldon PJ, Aldrich JR, Klun JA, Oliver JE, Debboun M (2003) Benzoquinones from millipedes deter mosquitoes and elicit self-anointing in capuchin monkeys (Cebus spp.). Naturwissenschaften 90:301–304

    Article  CAS  PubMed  Google Scholar 

  • Witte V, Disney RHL, Weissflog A, Maschwitz U (2010) Studies in European ant-decapitating flies (Diptera: Phoridae): ant alarm pheromone as host finding cue in Pseudacteon brevicauda, a parasite of Myrmica rubra (Formicidae: Myrmicinae). J Nat Hist 44:905–912

    Article  Google Scholar 

  • Zaragoza-Caballero S, Zurita-García ML (2015) A preliminary study on the phylogeny of the family Phengodidae (Insecta: Coleoptera). Zootaxa 3947:527. doi:10.11646/zootaxa.3947.4.4

    Article  PubMed  Google Scholar 

  • Zhang Q-H, Aldrich JR (2004) Attraction of scavenging chloropid and milichiid flies (Diptera) to metathoracic scent gland compounds of plant bugs (Heteroptera: Miridae). Environ Entomol 33:12–20. doi:10.1603/0046-225X-33.1.12

    Article  Google Scholar 

  • Zuk M, Rotenberry JT, Tinghitella RM (2006) Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol Lett 2:521–524. doi:10.1098/rsbl.2006.0539

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Maosheng Foo and Wei-Song Hwang of National University of Singapore for laboratory and field assistance and helping with collection permits. Emily Hartop assisted with collecting data on attraction of parasitoids to quinones in Singapore. Eduardo Amat organized the Colombia field trip and acquired research permits. The research was funded by the National Geographic Society, the Systematics, Evolution, and Biodiversity section of the Entomological Society of America, and the Center for Integrative Biological Collections at the University of California, Riverside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hash.

Electronic supplementary material

(MOV 12999 kb)

Table S1

(XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hash, J.M., Millar, J.G., Heraty, J.M. et al. Millipede Defensive Compounds Are a Double-Edged Sword: Natural History of the Millipede-Parasitic Genus Myriophora Brown (Diptera: Phoridae). J Chem Ecol 43, 198–206 (2017). https://doi.org/10.1007/s10886-016-0815-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0815-7

Keywords

Navigation