Skip to main content
Log in

Novel Multiplierless Wideband Comb Compensator with High Compensation Capability

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel multiplierless comb compensation filter, which has the absolute passband deviation less than 0.1 dB in the wide passband. The compensator consists of a cascade of two simple filter sections, both operating at a low rate. The magnitude characteristics of the two-component filters are synthesized as sinewave functions, in which the main design parameters correspond to the amplitudes of sinewave functions. A systematic procedure is followed to select synthesis parameters, which depend only on the number of cascaded comb filters. In particular, they are independent of the decimation factor. Comparisons with comb compensators from the literature illustrate the benefits of the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fernandez-Vazquez, G. Jovanovic Dolecek, A general method to design GCF compensation filter. IEEE Trans. Circuits Syst. II Express Brief 56, 409–413 (2009)

    Article  Google Scholar 

  2. A. Fernandez-Vazquez, G. Dolecek Jovanovic, Maximally flat CIC compensation filter: design and multiplierless implementation. IEEE Trans. Circuits Syst. II: Express Brief 54, 113–117 (2012)

    Article  Google Scholar 

  3. F.J. Harris, Multirate Signal Processing for Communication Systems (Prentice Hall, New Jersey, 2004)

    Google Scholar 

  4. E. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust. Speech Signal Process. ASSP 29, 155–162 (1981)

    Article  Google Scholar 

  5. G. Jovanovic Dolecek, Simple wideband CIC compensator. Electron. Lett. 45, 1270–1272 (2009)

    Article  Google Scholar 

  6. G. Jovanovic Dolecek, A. Fernandez-Vazquez, Trigonometrical approach to design a simple wideband comb compensator. Int. J. Electron. Commun. 68, 437–441 (2014)

    Article  Google Scholar 

  7. G. Jovanovic Dolecek, F. Harris, Design of wideband CIC compensator filter for a digital IF receiver. Digit. Signal Proc. 19, 827–837 (2009)

    Article  Google Scholar 

  8. S. Kim, W.C. Lee, S. Ahn, S. Cho, Design of CIC roll-off compensation filter in a W-CDMA digital IF receiver. Digit. Signal Process. 16, 846–854 (2006)

    Article  Google Scholar 

  9. G. Molnar, M. Vucic, Closed-form design of CIC compensators based on maximally flat error criterion. IEEE Trans. Circuits Syst. II Express Brief 58, 926–930 (2011)

    Article  Google Scholar 

  10. M. Pecotic, G. Molnar, M. Vucic, Design of CIC compensators with SPT coefficients based on interval analysis. Proceedings of 35th IEEE International Convention MIPRO 2012, pp. 123–128 (2012)

  11. D.E.T. Romero, G. Jovanovic Dolecek, Application of amplitude transformation for compensation of comb decimation filters. Electron. Lett. 49, 985–987 (2013)

    Article  Google Scholar 

  12. K.S. Yeung, S.C. Chan, The design and multiplier-less realization of software radio receivers with reduced system delay. IEEE Trans. Circuits Syst. I: Regul. Pap. 51, 2444–2459 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Jovanovic Dolecek.

Additional information

This work was supported by CONACYT Grant Nos. 179587 and 264138.

Appendix

Appendix

Here, the derivation of (29) is presented in detail.

From (27), we have:

$$\begin{aligned} \left| {H_c (e^{j\omega _k })} \right| <10^{\left| {\delta _d } \right| /40}. \end{aligned}$$
(31)

Using (14), we write:

$$\begin{aligned} \left| {H_c (e^{j\omega _k })} \right| =\left| {H(e^{j\omega _k })G_1 (e^{jM\omega _k })G_2 (e^{jM\omega _k })} \right| , \end{aligned}$$
(32)

where \(\omega _{k}\) are arbitrary frequencies in the passband, given by

$$\begin{aligned} \omega _k =\frac{\pi k}{2MN};k=1,\ldots N. \end{aligned}$$
(33)

Placing (32) into (31), we get:

$$\begin{aligned} \left| {H(e^{j\omega _k })G_1 (e^{jM\omega _k })G_2 (e^{jM\omega _k })} \right| <10^{\left| {\delta _d } \right| /40}. \end{aligned}$$
(34)

From (3), we write by noting that the comb magnitude response is positive in the passband:

$$\begin{aligned} \left| H(e^{j{\omega _k}}) \right| =\left[ {\frac{1}{M}\frac{\sin (\omega _k M/2)}{\sin (\omega _k /2)}} \right] ^{K}. \end{aligned}$$
(35)

We rewrite (35) as:

$$\begin{aligned} \left| {H(e^{j{\omega _k}})} \right| \approx \left[ {\frac{1}{M}\frac{\sin (\omega _k M/2)}{\omega _k /2}} \right] ^{K}. \end{aligned}$$
(36)

Placing (33) into (36), we get:

$$\begin{aligned} \left| {H(e^{j{\omega _k}})} \right| \approx \left[ {\frac{\sin (\pi k/(4N))}{\pi k/(4N)}} \right] ^{K}. \end{aligned}$$
(37)

Similarly, using (4), we write:

$$\begin{aligned} \left| {G_2 (e^{j\omega _k M})} \right| =1+B_{2s_k } \sin ^{2}(\omega _k M/2)=1+B_{2s_k } \sin ^{2}(\pi k/(4N)). \end{aligned}$$
(38)

From (34), (37), and (38), we arrive at:

$$\begin{aligned} \left[ {\frac{\sin (\pi k/(4N))}{\pi k/(4N)}} \right] ^{K}G_1 (e^{jM\omega _k })\left[ {1+B_{2s_k } \sin ^{2}(\pi k/(4N))} \right] <10^{\left| {\delta _d } \right| /40}. \end{aligned}$$
(39)

From here, we have:

$$\begin{aligned} \left[ {1+B_{2s_k } \sin ^{2}(\pi k/(4N))} \right] <\frac{\left[ {\frac{\pi k/(4N)}{\sin (\pi k/(4N))}} \right] ^{K}}{G_1 (e^{jM\omega _k })}10^{\left| {\delta _d } \right| /40}. \end{aligned}$$
(40)

Also,

$$\begin{aligned} B_{2s_k } \sin ^{2}(\pi k/(4N))<\frac{-G_1 (e^{jM\omega _k })+\left[ {\frac{\pi k/(4N)}{\sin (\pi k/(4N))}} \right] ^{K}10^{\left| {\delta _d } \right| /40}}{G_1 (e^{jM\omega _k })}, \end{aligned}$$
(41)

and

$$\begin{aligned} B_{2s_k } <\frac{-G_1 (e^{jM\omega _k })+\left[ {\frac{\pi k/(4N)}{\sin (\pi k/(4N))}} \right] ^{K}10^{\left| {\delta _d } \right| /40}}{G_1 (e^{jM\omega _k })\sin ^{2}(\pi k/(4N))}. \end{aligned}$$
(42)

Using (5), we write:

$$\begin{aligned} \left| {G_1 (e^{j\omega _k M})} \right| =1+B_1 \sin ^{2}(\omega _k M/2)=1+B_1 \sin ^{2}(\pi k/(4N)), \end{aligned}$$
(43)

where values \(B_{1}\) are given in Table 2.

Finally, from (42) and (43), we arrive at:

$$\begin{aligned} B_{2s_k } <\frac{-\left[ {1+B_1 \sin ^{2}(\pi k/(4N))} \right] +\left[ {\frac{\pi k/(4N)}{\sin (\pi k/(4N))}} \right] ^{K}10^{\left| {\delta _d } \right| /40}}{\left[ {1+B_1 \sin ^{2}(\pi k/(4N))} \right] \sin ^{2}(\pi k/(4N))}, \quad k=1,{\ldots },N .\nonumber \\ \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanovic Dolecek, G., Baez, R.G., Molina Salgado, G. et al. Novel Multiplierless Wideband Comb Compensator with High Compensation Capability. Circuits Syst Signal Process 36, 2031–2049 (2017). https://doi.org/10.1007/s00034-016-0398-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0398-0

Keywords

Navigation