Skip to main content
Log in

Environmentally safe fluoride cycle in tungsten technology. Substantiation of the production cycle with fluorine and hydrogen recycle

  • Metallurgy of Rare and Noble Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A fluoride cycle in tungsten technology is based on three processes: (i) electrochemical decomposition of HF in the KHF2 + HF melt at 80–100°C with the separate evolution of gaseous fluorine and hydrogen; (ii) fluorination of the tungsten powder with evoluated fluorine at 300–350°C with the condensation of formed WF6 in a liquid form at t = 2.5–3.0°C, and (iii) reduction of gaseous WF6 with evoluated hydrogen at t = 580–600°C with the condensation of formed HF at +1°C and its use for the fluorine and hydrogen production, thereby ensuring their recycling in the cycle. The optimization of mentioned processes resulted in hardware-process implementations providing the formation of a large-scale plane and cylindrical billets in the industrial scale for deformation, as well as pipes, crucibles, and other products of various sizes made of tungsten with productivity of one process line of ~4.3 kg/h (>34 t/yr) with the fulfillment of environmental requirements. In contrast with the methods of powder metallurgy, the described technology ensures the formation of dense half-finished products and products made of pure tungsten with finer grain structures and almost unlimited sizes. Herewith, the specific power consumption for 1 kg of production lowers by a factor of 2.0–2.5. To increase the production efficiency, the simultaneous operation of four process lines in an automated mode is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neiberlein, V.A. and Kenworthy, N., U.S. Bureau of Mines: Report of Investigation, 1959, no. 5539, pp. 1–27.

    Google Scholar 

  2. Reid, W.E. and Brenner, A., Tungsten for high-temperature coating, U.S. Bureau of Standards. Tech. News Bull., 1960, vol. 44, no. 2, pp. 32–33.

    Google Scholar 

  3. Korolev, Yu.M. and Stolyarov, V.I., Vosstanovlenie ftoridov tugoplavkikh metallov vodorodom (Reduction of Refractory Metal Fluorides with Hydrogen), Moscow: Metallurgiya, 1981. http://www.fluoridetech.ucoz.ru.

  4. Korolev, Yu.M., Deposition of tungsten by reduction of its hexafluoride with hydrogen under the stoichiometric component ratio: an environmentally pure production process, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 2, pp. 149–154.

    Article  Google Scholar 

  5. Rakov, E.G. and Veleshko, N.A., Production of tungsten coatings and articles by hydrogen reduction of its hexafluoride, Atomn. Tekhn. Rubezh., 1974, vol. 1, pp. 18–26.

    Google Scholar 

  6. Ruff, O. and Escher, A., Tungsten hexafluoride producing method, Anorg. Allgem. Chem., 1931, vol. 196, pp. 413–420.

    Article  Google Scholar 

  7. Clark, H. and Emeleus, J., Chemical properties of tungsten hexafluoride, Chem. Soc., 1957, pp. 4778–4781.

    Google Scholar 

  8. Martin, W.R., Heestand, R.L., McDonald, R.E., and Reimann, G.Al., Application of chemical vapor deposition to the production of tungsten tubing, in: Proc. Chemical Vapor Deposition of Refractory Metals, Alloys and Compounds, Gatlinburg, TN, 1967, pp. 303–311.

  9. Agnokov, T.Sh., Korolev, Yu.M., Sviderskii, M.F., Solov’ev, V.F., Stolyarov, V.I., Petranin, N.P., and Pobedash, N.V., Fluorination of metal rejects of molybdenum and tungsten, in: Khimiya i tekhnologiya molibdena i vol’frama (Chemistry and Technology of Molybdenum and Tungsten), Nal’chik: Kab.-Balk. Gos. Univ., 1978, no. 4, pp. 22–31.

    Google Scholar 

  10. Agnokov, T.Sh., Korolev, Yu.M., Sviderskii, M.F., Solov’ev, V.F., Stolyarov, V.I., Petranin, N.P., and Pobedash, N.V., Certain principles of modeling of reactors for fluorination of metal tungsten, in: Khimiya i tekhnologiya molibdena i vol’frama (Chemistry and Technology of Molybdenum and Tungsten), Nal’chik: Kab.-Balk. Gos. Univ., 1979, pp. 18–24.

    Google Scholar 

  11. Marinenko, E.P., Rudnikov, A.I., Krupin, A.G., Kuz’minykh, S.A., Khokhlov, V.A., Lazarchuk, V.V., and Komissarov, A.A., RF Patent 2209771, 2003.

  12. Sabasky, B.J. and Doane, R.E., US Patent 5348723, 1994.

  13. Kuz’minykh, S.A., Galata, A.A., Khokhlov, A.A., Lazarchuk, V.V., Krupin, A.G., Marinenko, E.P., and Rudnikov, A.I., RF Patent 2310608, 2004.

  14. Krasil’nikov, V.A., Makarov, F.V., Guzeeva, T.I., and Levshanov, A.I., RF Patent 2315000, 2004.

  15. Krasil’nikov, V.A., Andreev, G.G., Levshanov, A.I., and Guzeeva, T.I., Kobzar’ Yu.F., Zhiganov A.N., Ledovskih, A.K., Zajceva, T.S., Portyanina, E.O., Sherin, Yu.F., and Shedikov, V.P., RF Patent 2142656, 1999.

  16. Lazarchuk, V.V., Ledovskikh, A.K., Matveev, A.A., Galata, A.A., Murlyshov, A.P., Volchkov, V.S., and Sinkin, I.M., Complex waste-free technology of producing of tungsten objects by gas-phase reduction, in: Fiziko-tekhnicheskie problemy atomnoj ehnergetiki i promyshlennosti (Physical and Technical Problems of Atomic Energetics and Industry), Tomsk: Tomsk Politekh. Univ., 2010, p. 102.

    Google Scholar 

  17. Guzeeva, T.I., Andreev, G.G., Krasil’nikov, V.A., and Makarov, F.V., Complex processing of salts, concentrates, and wastes of refractory metals using elemental fluorine, in: Ftoridnye tekhnologii (Fluoride Technologies), Tomsk: Tomsk Politekh. Univ., 2009, p. 47.

    Google Scholar 

  18. Karelin, V.A. and Karelin, A.I., Ftoridnaya tekhnologiya pererabotki koncentratov redkih metallov (Fluoride Processing Technology of Concentrates of Rare Metals), Tomsk: NTL, 2004.

    Google Scholar 

  19. Korolev, Yu.M., Agnokov, T.Sh., Sviderskii, M.F., Solov’ev, V.F., and Kornetov, O.P., Fluoride process flowsheet of metal wastes of tungsten and molybdenum, in: Khimiya i tekhnologiya molibdena i vol’frama (Chemistry and Technology of Molybdenum and Tungsten), Nal’chik: Kab.-Balk. Gos. Univ., 1983, pp. 26–34.

    Google Scholar 

  20. Ryss, I.G., Khimiya ftora i ego neorganicheskikh soedinenii (Chemistry of Fluorine and Its Inorganic Compounds), Moscow: Goskhimizdat, 1956.

    Google Scholar 

  21. Galkin, N.P. and Krutikov, A.B., Tekhnologiya ftora (Technology of Fluorine), Moscow: Gosatomizdat, 1968.

    Google Scholar 

  22. Galkin, N.P., Majorov, A.A., Veryatin, V.U., Sudarikov, B.N., Nikolaev, N.S., Shishkov, Yu.D., and Krutikov, A.B., Khimiya i tekhnologiya ftoristykh soedinenii urana (Chemistry and Technology of Fluorine- Containing Uranium Compounds), Moscow: Gosatomizdat, 1961.

    Google Scholar 

  23. Korolev, Yu.M., Synthesis of WF6 by fluorination of tungsten metal with flowing fluorine in a fixed bed tungsten reactor, Proc. Chem., 2014, vol. 11, pp. 73–77.

    Article  Google Scholar 

  24. Korolev, Yu.M., Optimization of fluorination of tungsten powder with fluorine in a fixed bed reactor with provision of environmental requirements, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2016, no. 4, pp. 23–33.

    Article  Google Scholar 

  25. Osnovnye svoistva neorganicheskikh ftoridov (Fundamental Properties of Inorganic Fluorides), Galkin, N.P., Ed., Moscow: Atomizdat, 1976.

  26. Cady, G.H. and Hargreaves, G.B., Vapor pressure of some heavy transition metal hexafluorides, J. Chem. Soc., 1961, vol. 58, pp. 1563–1574.

    Article  Google Scholar 

  27. Metodicheskie ukazaniya po izmereniyu koncentracii vrednyh veshchestv v vozduhe rabochej zony. Vypusk XXI (Methodological Instructions for the Measurement of the Concentration of Harmful Substances in the Working Area Air. No. XXI), Moscow: Minzdrav SSSR, 1986.

  28. Brenner, A., Chase, C., Reid, W.E., and Connor, J.H., US Patent 3139658, 1964.

  29. Krasovskij, A.I., Chuzhko, R.K., Tregulov, V.R., and Balahovskij, O.A., Ftoridnyi process polucheniya vol’frama (Fluoride Process of Tungsten Producing), Moscow: Nauka, 1981.

    Google Scholar 

  30. Lakhotkin, Yu.V., Kuz’min, V.P., Goncharov, V.L., and Dushik, V.V., Fluoride deposition of tungsten and its alloys with refractory metals and carbon, Abstracts of Papers, Vserossiiskaya konferentsiya “Ftoridnye tekhnologii” (All-Russia Conf. “Fluoride Technologies”), Tomsk: Tomsk Politekh. Univ., 2009, p. 45.

    Google Scholar 

  31. Vybyvanets, V.I., Kosukhin, V.V., Cherenkov, A.V., and Shilkin, G. S., Fluoride production technology of pure tungsten products, Abstracts of Papers, Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Fizikotekhnicheskie problemy atomnoi energetiki i promyshlennosti” (Int. Sci.-and-Pract. Conf. “Physical and Technical Problems of Atomic Energetics and Industry), Tomsk: Tomsk Politekh. Univ., 2010, p. 129.

    Google Scholar 

  32. Ivanov, V.V., Nechiporenko, E.P., Krivoruchko, V.M., and Sagalovich, V.V., Kristallizatsiya tugoplavkikh metallov iz gazovoi fazy (Crystallization of Refractory Metals from the Vapor Phase), Moscow: Atomizdat, 1974.

    Google Scholar 

  33. Korolev, Yu.M. and Sorkin, V.A., Production and application of CVD tungsten, in: High Temperature and Wear Resistant Materials in a World Changing Technology: Proc. Int. Plansee Sem., Tirolia Innsbruck, 1989, vol. 1, pp. 8–12.

    Google Scholar 

  34. Shroff, A.M. and Deival, G., Recent development in the chemical vapor deposition of tungsten and molybdenum, High temperatures. High pressures, 1971, vol. 3, pp. 695–712.

    Google Scholar 

  35. Sorkin, V.A., Korolev, Yu.M., Morozova, O.V., and Kornetov, O.P., Production of crucibles from tungsten fluoride, in: Poluchenie i svoistva materialov na osnove molibdena i vol’frama (Production and Properties of Materials Based on Molybdenum and Tungsten), Moscow: Metallurgiya, 1987, pp. 29–34.

    Google Scholar 

  36. Makaseev, A.Yu., Brendakov, V.N., Murlyshev, A.P., and Volchkov, V.S., Modeling of deposition of tungsten crucibles by hydrogen reduction of WF6, Abstracts of Papers, Vserossiiskaya konferentsiya “Ftoridnye tekhnologii” (All-Russia Conf. “Fluoride Technologies”), Tomsk: Tomsk Politekh. Univ., 2009, p. 46.

    Google Scholar 

  37. Korolev, Yu.M., Sorkin, V.A., and Fastovskii, V.S., Combined material based on CVD tungsten, in: Tekhnologicheskie i ehkspluatacionnye svoistva molibdenovykh i vol’framovykh splavov (Process and Operational Properties of Alloys of Molybdenum and Tungsten): Sb. Nauch. Tr. (Collected Articles) VNIITS, Moscow: TsNIItsvetmet Ekon. Inform., 1991, pp. 50–56.

    Google Scholar 

  38. Malashenko, I.S., Fastovskii, V.S., Izotov, V.M., and Abalikhin A.V., Influence of plastic deformation and thermal processing for mechanical properties gas-phase tungsten, in: Tverdye splavy i tugoplavkie metally (Hard Alloys and Refractory Metals), Sb. Nauch. Tr. (Collected Articles) VNIITS, Moscow: Metallurgiya, 1976, pp. 231–237.

    Google Scholar 

  39. Fastovskii, V.S., Kolchin, O.P., Naumkin, O.P., and Abalikhin, A.V., Structure and properties of deformed vapor-phase tungsten half-finished products, in: Tverdye splavy i tugoplavkie metally (Hard Alloys and Refractory Metals), Sb. Nauch. Tr. (Collected Articles) VNIITS, Moscow: Metallurgiya, 1975, pp. 232–238.

    Google Scholar 

  40. Korolev, Yu.M., Solov’ev, V.F., Stolyarov, V.I., and Izhvanov, L.A., Production of fluoride tungsten rods, Tsvetnye Metally, 1978, no. 3, pp. C. 69–70.

    Google Scholar 

  41. Morozova, O.V., Korolev, Yu.M., Kornetov, O.P., and Kesaev, T.M., Production of rod billets of pure tungsten by hydrogen reduction of its hexafluoride, in: Metallurgiya vol’frama i molibdena (Metallurgy of Tungsten and Molybdenum), Moscow: Metallurgiya, 1982, pp. 39–44.

    Google Scholar 

  42. Sorkin, V.A., Korolev, Yu.M., Kornetov, O.P., Morozova, O.V., Kesaev, T.M., and Hugaev, M.H., Multistation reaction chamber for the production of fluoride tungsten rods, in: Metallurgiya i metallovedenie vol’frama i molibdena (Metallurgy and Materials Science of Tungsten and Molybdenum), Sb. Nauch. Tr. (Collected Articles) VNIITS, Moscow: Metallurgiya, 1983, pp. 28–32.

    Google Scholar 

  43. Korolev, Yu.M., Shapovalova, I.I., Morozova, O.V., and Romashov, V.M., Structural changes of CVD tungsten under rotational forging, in: Poluchenie i svojstva tugoplavkih materialov (Producing and Properties of Refractory Materials), Moscow: Metallurgiya, 1989. pp. 78–81.

  44. Korolev, Yu.M., Solov’ev, V.F., Stolyarov, V.I., Pobedash, N.V., and Izhvanov, L.A., Production of tungsten tube by hydrogen reduction its hexafluoride, in: Elektr. Tekh. Ser. 7. Tekhnol., Organiz. Proizvod. Oborud., 1979, vol. 3 (94), pp. 3–9.

    Google Scholar 

  45. Heestand, R.L. and Leitten, C.F., Parameters for the production refractory-metal tubing by the vapor deposition process, in: Refractory Metals and Alloys: Proc. 3rd Int. Conf., New York–London–Paris, 1966, Appl. Aspect, pp. 113–125.

    Google Scholar 

  46. Weinberg, A.F., Lindgren, J.R., and Mills, R.G., Vapor deposited tungsten for application as a thermionic emitter material, in: Termionic Electrical Power Generation: Proc. Int. Conf., London, 1965, pp. 542–553.

    Google Scholar 

  47. Thin wall tungsten tubing produced by vapor deposition, Mater. Design Eng., 1966, vol. 64, no. 2, p. 19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Korolev.

Additional information

Original Russian Text © Yu.M. Korolev, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2016, No. 6, pp. 29–41.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.M. Environmentally safe fluoride cycle in tungsten technology. Substantiation of the production cycle with fluorine and hydrogen recycle. Russ. J. Non-ferrous Metals 58, 44–54 (2017). https://doi.org/10.3103/S1067821217010072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217010072

Keywords

Navigation