Skip to main content
Log in

Role of disorder in determining the vibrational properties of mass-spring networks

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By introducing four fundamental types of disorders into a two-dimensional triangular lattice separately, we determine the role of each type of disorder in the vibration of the resulting mass-spring networks. We are concerned mainly with the origin of the boson peak and the connection between the boson peak and the transverse Ioffe–Regel limit. For all types of disorders, we observe the emergence of the boson peak and Ioffe–Regel limits. With increasing disorder, the boson peak frequency ω BP , transverse Ioffe–Regel frequency ω IR T, and longitudinal Ioffe–Regel frequency ω IR L all decrease. We find that there are two ways for the boson peak to form: developing from and coexisting with (but remaining independent of) the transverse van Hove singularity without and with local coordination number fluctuation. In the presence of a single type of disorder, ω IR Tω BP , and ω IR Tω BP only when the disorder is sufficiently strong and causes spatial fluctuation of the local coordination number. Moreover, if there is no positional disorder, ω IR Tω IR L. Therefore, the argument that the boson peak is equivalent to the transverse Ioffe–Regel limit is not general. Our results suggest that both local coordination number and positional disorder are necessary for the argument to hold, which is actually the case for most disordered solids such as marginally jammed solids and structural glasses. We further combine two types of disorders to cause disorder in both the local coordination number and lattice site position. The density of vibrational states of the resulting networks resembles that of marginally jammed solids well. However, the relation between the boson peak and the transverse Ioffe–Regel limit is still indefinite and condition-dependent. Therefore, the interplay between different types of disorders is complicated, and more in-depth studies are required to sort it out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., 2005

    MATH  Google Scholar 

  2. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Thomson Brooks/Cole, 1976

    MATH  Google Scholar 

  3. A. F. Ioffe and A. R. Regel, Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  4. T. Nakayama, K. Yakubo, and R. L. Orbach, Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations, Rev. Mod. Phys. 66(2), 381 (1994)

    Article  ADS  Google Scholar 

  5. E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)

    ADS  Google Scholar 

  6. T. Keyes, Instantaneous normal mode approach to liquid state dynamics, J. Phys. Chem. A 101(16), 2921 (1997)

    Article  Google Scholar 

  7. W. Schirmacher, G. Diezemann, and C. Ganter, Harmonic vibrational excitations in disordered solids and the “boson peak”, Phys. Rev. Lett. 81(1), 136 (1998)

    Article  ADS  Google Scholar 

  8. J. W. Kantelhardt, S. Russ, and A. Bunde, Excess modes in the vibrational spectrum of disordered systems and the boson peak, Phys. Rev. B 63(6), 064302 (2001)

    Article  ADS  Google Scholar 

  9. T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Vibrations in glasses and Euclidean random matrix theory, J. Phys.: Condens. Matter 14(9), 2167 (2002)

    ADS  Google Scholar 

  10. T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Phonon interpretation of the “boson peak” in supercooled liquids, Nature 422(6929), 289 (2003)

    Article  ADS  Google Scholar 

  11. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B 67(9), 094203 (2003)

    Article  ADS  Google Scholar 

  12. A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)

    Article  ADS  Google Scholar 

  13. J. Wuttke, W. Petry, G. Coddens, and F. Fujara, Fast dynamics of glass-forming glycerol, Phys. Rev. E 52(4), 4026 (1995)

    Article  ADS  Google Scholar 

  14. P. Lunkenheimer, U. Schneider, R. Brand, and A. Loid, Glassy dynamics, Contemp. Phys. 41(1), 15 (2000)

    Article  ADS  Google Scholar 

  15. T. Nakayama, Boson peak and terahertz frequency dynamics of vitreous silica, Rep. Prog. Phys. 65(8), 1195 (2002)

    Article  ADS  Google Scholar 

  16. W. A. Phillips (Ed.), Amorphous Solids: Low Temperature Properties, Berlin: Springer-Verlag, 1981

    Book  Google Scholar 

  17. N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Excess vibrational modes and the boson peak in model glasses, Phys. Rev. Lett. 98(17), 175502 (2007)

    Article  ADS  Google Scholar 

  18. M. Wyart, On the rigidity of amorphous solids, Ann. Phys. 30(3), 1 (2005)

    Article  Google Scholar 

  19. H. Shintani and Y. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)

    Article  ADS  Google Scholar 

  20. Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality, Phys. Rev. E 93(2), 023006 (2016)

    Article  ADS  Google Scholar 

  21. U. Tanaka, Physical origin of the boson peak deduced from a two-order-parameter model of liquid, J. Phys. Soc. Jpn. 70(5), 1178 (2001)

    Article  ADS  Google Scholar 

  22. E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)

    ADS  Google Scholar 

  23. C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)

    Article  ADS  Google Scholar 

  24. L. E. Silbert, A. J. Liu, and S. R. Nagel, Vibrations and diverging length scales near the unjamming transition, Phys. Rev. Lett. 95(9), 098301 (2005)

    Article  ADS  Google Scholar 

  25. E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and M. Wyart, Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids, Soft Matter 10(30), 5628 (2014)

    Article  ADS  Google Scholar 

  26. W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98(2), 025501 (2007)

    Article  ADS  Google Scholar 

  27. W. Schirmacher, Thermal conductivity of glassy materials and the “boson peak”, Europhys. Lett. 73(6), 892 (2006)

    Article  ADS  Google Scholar 

  28. A. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, Acoustic dynamics of network-forming glasses at mesoscopic wavelengths, Nat. Commun. 4, 1793 (2013)

    Article  ADS  Google Scholar 

  29. F. Léonforte, A. Tanguy, J. P. Wittmer, and J. L. Barrat, Inhomogeneous elastic response of silica glass, Phys. Rev. Lett. 97(5), 055501 (2006)

    Article  ADS  Google Scholar 

  30. G. Monaco and S. Mossa, Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale, Proc. Natl. Acad. Sci. USA 106(40), 16907 (2009)

    Article  ADS  Google Scholar 

  31. C. A. Angell, Y. Z. Yue, L. M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses, J. Phys.: Condens. Matter 15(11), S1051 (2003)

    Google Scholar 

  32. D. A. Parshin, H. R. Schober, and V. L. Gurevich, Vibrational instability, two-level systems, and the boson peak in glasses, Phys. Rev. B 76(6), 064206 (2007)

    Article  ADS  Google Scholar 

  33. L. Wang and N. Xu, Probing the glass transition from structural and vibrational properties of zerotemperature glasses, Phys. Rev. Lett. 112(5), 055701 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Singh, M. D. Ediger, and J. J. de Pablo, Ultrastable glasses from in silico vapour deposition, Nat. Mater. 12(2), 139 (2013)

    Article  ADS  Google Scholar 

  35. S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Origin of the boson peak in systems with lattice disorder, Phys. Rev. Lett. 86(7), 1255 (2001)

    Article  ADS  Google Scholar 

  36. A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parliński, P. Jochym, and P. Piekarz, Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals, Phys. Rev. Lett. 106(22), 225501 (2011)

    Article  ADS  Google Scholar 

  37. H. Tong, P. Tan, and N. Xu, From crystals to disordered crystals: A hidden order-disorder transition, Sci. Rep. 5, 15378 (2015)

    Article  ADS  Google Scholar 

  38. A. J. Liu and S. R. Nagel, Nonlinear dynamics: Jamming is not just cool any more, Nature 396(6706), 21 (1998)

    Article  ADS  Google Scholar 

  39. A. J. Liu and S. R. Nagel, The jamming transition and the marginally jammed solid, Annu. Rev. Condens. Matter Phys. 1(1), 347 (2010)

    Article  ADS  Google Scholar 

  40. M. van Hecke, Jamming of soft particles: Geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter 22(3), 033101 (2010)

    ADS  Google Scholar 

  41. N. Xu, Mechanical, vibrational, and dynamical properties of amorphous systems near jamming, Front. Phys. 6(1), 109 (2011)

    Article  Google Scholar 

  42. C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68(1), 011306 (2003)

    Article  ADS  Google Scholar 

  43. S. Torquato and F. H. Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Rev. Mod. Phys. 82(3), 2633 (2010)

    Article  ADS  Google Scholar 

  44. G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys. 82(1), 789 (2010)

    Article  ADS  Google Scholar 

  45. M. Müller and M. Wyart, Marginal stability in structural, spin, and electron glasses, Annu. Rev. Condens. Matter Phys. 6(1), 177 (2015)

    Article  ADS  Google Scholar 

  46. M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Effects of compression on the vibrational modes of marginally jammed solids, Phys. Rev. E 72(5), 051306 (2005)

    Article  ADS  Google Scholar 

  47. M. Wyart, S. R. Nagel, and T. A. Witten, Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids, Europhys. Lett. 72(3), 486 (2005)

    Article  ADS  Google Scholar 

  48. H. Tong and N. Xu, Order parameter for structural heterogeneity in disordered solids, Phys. Rev. E 90, 010401(R) (2014)

    Article  ADS  Google Scholar 

  49. http://www.caam.rice.edu/software/ARPACK

  50. X. Wang, W. Zheng, L. Wang, and N. Xu, Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses, Phys. Rev. Lett. 114(3), 035502 (2015)

    Article  ADS  Google Scholar 

  51. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Amsterdam: Elsevier, 1986

    MATH  Google Scholar 

  52. J. Liu, Y. Nie, and N. Xu (in preparation)

  53. E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, Structural relaxation made simple, Phys. Rev. Lett. 97(17), 170201 (2006)

    Article  ADS  Google Scholar 

  54. E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Identifying structural flow defects in disordered solids using machine-learning methods, Phys. Rev. Lett. 114(10), 108001 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21325418 and 11574278), and the Fundamental Research Funds for the Central Universities (Grant No. 2030020028). We also thank the Supercomputing Center of University of Science and Technology of China for computer times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xu.

Additional information

Special Topic: Soft-Matter Physics and Complex Systems (Ed. Zhi-Gang Zheng). arXiv: 1703.00114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Tong, H., Liu, J. et al. Role of disorder in determining the vibrational properties of mass-spring networks. Front. Phys. 12, 126301 (2017). https://doi.org/10.1007/s11467-017-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0668-8

Keywords

Navigation