Skip to main content
Log in

Antiferromagnetic inclusions in organic semiconductor (DOEO)4[HgBr4] · TCE

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The systematic studies of the electronic state of surface layers in organic semiconductor (DOEO)4[HgBr4] · TCE by X-ray photoelectron spectroscopy and UV photoelectron spectroscopy are performed. At temperatures below 50–70 K, a transition to the antiferromagnetic state is observed in inclusions having a different structure compared to the crystal bulk. According to transmission electron microscopy, there are two types of antiferromagnetic inclusions in the samples, with sizes of 2–5 and 100–400 nm. The contributions of antiferromagnetic inclusions and the spins of localized and free charge carriers (holes) to the total magnetic moment of the crystal are separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Toyota, M. Lang, and J. Müller, Low-Dimensional Molecular Metals (Springer, Berlin, 2007).

    Book  Google Scholar 

  2. F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai, and Y. Murakami, Nat. Phys. 9, 419 (2013).

    Article  Google Scholar 

  3. R. B. Morgunov, A. I. Dmitriev, A. S. Chernen’kaya, K. Yakushi, K. Yamamoto, and I. Tanimoto, JETP 111, 857 (2010).

    Article  Google Scholar 

  4. A. A. Bardin, A. I. Kotov, S. S. Khasanov, G. V. Shilov, L. I. Buravov, L. Okhab, and E. B. Yagubskii, Russ. J. Coord. Chem. 32, 82 (2006).

    Article  Google Scholar 

  5. A. Lapinski and A. I. Kotov, Chem. Phys. 326, 551 (2006).

    Article  Google Scholar 

  6. A. Lapinski, A. Gasecka, A. Graja, S. Waplak, A. Ostrowski, and A. I. Kotov, Opt. Mater. 34, 1651 (2012).

    Article  Google Scholar 

  7. A. Lapinski and A. I. Kotov, Mol. Phys. 106, 33 (2008).

    Article  Google Scholar 

  8. A. S. Chernen’kaya, O. V. Koplak, A. I. Kotov, R. B. Morgunov, and E. B. Yagubskii, Phys. Solid State 54, 2391 (2012).

    Article  Google Scholar 

  9. J. J. Yeh and I. Lindau, Atom. Data Nucl. Data Tables 31, 1 (1985).

    Article  Google Scholar 

  10. A. Sekiyama, T. Susaki, A. Fujimori, T. Sasaki, N. Toyota, T. Kondo, G. Saito, M. Tsunekawa, T. Iwasaki, T. Muro, T. Matsushita, S. Suga, H. Ishii, and T. Miyahara, Phys. Rev. B: Condens. Matter Mater. Phys. 56, 9082 (1997).

    Article  Google Scholar 

  11. R. Liu, H. Ding, J. C. Campuzano, H. H. Wang, J. M. Williams, and K. D. Carlson, Phys. Rev. B: Condens. Matter Mater. Phys. 51, 13000 (1995).

    Article  Google Scholar 

  12. J. E. Downes, K. E. Smith, A. Y. Matsuura, I. Lindau, and J. A. Schlueter, Surf. Sci. 551, 219 (2004).

    Article  Google Scholar 

  13. T. Kiss, A. Chainani, H. M. Yamamoto, T. Miyazaki, T. Akimoto, T. Shimojima, K. Ishizaka, S. Watanabe, C.-T. Chen, A. Fukaya, R. Kato, and S. Shin, Nat. Commun. 3, 1089 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Additional information

Original Russian Text © O.V. Koplak, A.I. Dmitriev, R.B. Morgunov, 2017, published in Poverkhnost’, 2017, No. 1, pp. 62–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koplak, O.V., Dmitriev, A.I. & Morgunov, R.B. Antiferromagnetic inclusions in organic semiconductor (DOEO)4[HgBr4] · TCE. J. Surf. Investig. 11, 114–119 (2017). https://doi.org/10.1134/S1027451016050529

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050529

Keywords

Navigation