Skip to main content
Log in

Structure and phase transitions of DMPC multilamellar vesicles in the presence of Ca2+ ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Results obtained via small-angle neutron scattering studies of the influence of calcium ions on the structure and phase transitions of phospholipid membranes are presented. The main phase transition temperature of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (1 wt %) multilamellar vesicles is demonstrated to increase by more than 1°C even when the calcium-ion content of the solution is low (0.1 mM). Detailed analysis of the multilamellar vesicles transition between “bound” and “unbound” state indicates the continuous character of the investigated process in both liquid and gel phases. The critical Ca2+ ion concentrations which initiate the destruction of the multilamellar structures and the formation of unilamellar vesicles are found to be ~0.3 mM in the gel and ~0.4–0.5 mM in the liquid-crystal phases during heating and ~0.5 mM in the phases under study upon cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989). doi 10.1007/978-1-4757-2065-5

    Book  Google Scholar 

  2. H. C. Lee, R. Aarhus, and T. F. Walseth, Science (Washington, DC) 261 (5119), 352 (1993). doi 10.1126/science.8392749

    Article  Google Scholar 

  3. M. Berridge, P. Lipp, and M. Bootman, Curr. Biol. 9, 157 (1999). doi 10.1016/S0960-9822(99)80101-8

    Article  Google Scholar 

  4. O. H. Petersen, M. Michalak, and A. Verkhratsky, Cell Calcium 38, 161 (2005). doi 10.1016/j.ceca.2005.06.023

    Article  Google Scholar 

  5. A. G. Lee, Biochim. Biophys. Acta 1666, 62 (2004). doi 10.1016/j.bbamem.2004.05.012

    Article  Google Scholar 

  6. M. Rappolt, G. Pabst, H. Amenitsch, and P. Laggner, Colloids Surf., A 183–185, 171 (2001). doi 10.1016/S0927-7757(01)00568-4

    Article  Google Scholar 

  7. R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Biophys. J. 85, 1647 (2003). doi 10.1016/s0006-3495(03)74594-9

    Article  Google Scholar 

  8. H. I. Petrache, I. Kimchi, D. Harries, and V. A. Parsegian, J. Am. Chem. Soc. 127, 11546 (2005). doi 10.1021/ja052549+

    Article  Google Scholar 

  9. H. I. Petrache, S. Tristram-Nagle, D. Harries, N. Kucerka, J. F. Nagle, and V. A. Parsegian, J. Lipid Res. 47, 302 (2006). doi 10.1194/jlr.M500401-JLR200

    Article  Google Scholar 

  10. D. P. Kharakoz, Biosci. Rep. 21, 801 (2006). doi 10.1023/A:1015588825142

    Article  Google Scholar 

  11. J. Seelig, P. M. Macdonald, and P. G. Scherer, Biochemistry 26 (24), 7535 (1987). doi 10.1021/bi00398a001

    Article  Google Scholar 

  12. J. N. Sachs, H. Nanda, H. I. Petrache, and T. B. Woolf, Biophys. J. 86, 3772 (2004). doi 10.1529/biophysj. 103.035816

    Article  Google Scholar 

  13. S. A. Pandit, D. Bostick, and M. L. Berkowitz, Biophys. J. 84, 3743 (2003). doi 10.1016/S0006-3495(03)75102-9

    Article  Google Scholar 

  14. R. A. Böckmann and H. Grubmüller, Angew. Chem., Int. Ed. Engl. 43, 1021 (2004). doi 10.1002/anie.200352784

    Article  Google Scholar 

  15. D. Uhríková, J. Teixeira, A. Lengyela, L. Almásy, and P. Balgavý, J. Spectrosc. 21, 43 (2007). doi 10.1155/2007/576282

    Article  Google Scholar 

  16. G. Pabst, N. Kucerka, M.-P. Nieh, M. C. Rheinstadter, and J. Katsaras, Chem. Phys. Lipids 163, 460 (2010). doi 10.1016/j.chemphyslip.2010.03.010

    Article  Google Scholar 

  17. D. P. Kharakoz, Biosci. Rep. 21 (6), 801 (2001). doi 10.1023/A:1015588825142

    Article  Google Scholar 

  18. Yu. E. Gorshkova and O. I. Ivankov, J. Optoelectron. Adv. Mater. (2016) (in press).

    Google Scholar 

  19. D. Chapman, W. Peel, B. Kingston, and T. Lilley, Biochim. Biophys. Acta 464, 260 (1977). doi 10.1016/0005-2736(77)90002-5

    Article  Google Scholar 

  20. R. Koynova and M. Caffrey, Biochim. Biophys. Acta 1376, 91 (1998). doi 10.1016/S0304-4157(98)00006-9

    Article  Google Scholar 

  21. S. G. Black and G. S. Dixon, Biochemistry 20 (23), 6740 (1981). doi 10.1021/bi00526a033

    Article  Google Scholar 

  22. N. L. Yamada, H. Seto, T. Takeda, M. Naga, Y. Kawabata, and K. Inoue, J. Phys. Soc. Jpn. 74, 2853 (2005). doi 10.1143/JPSJ.74.2853

    Article  Google Scholar 

  23. R. Lipowsky and B. Zelinska, Phys. Rev. Lett. 62, 1572 (1989). doi 10.1103/PhysRevLett.62.1572

    Article  Google Scholar 

  24. W. Helfrich, J. Phys. II 3, 385 (1993). doi 10.1051/jp2:1993100

    Google Scholar 

  25. J. N. Izraelachvili, J. Phys. Chem. 96, 520 (1992). doi 10.1021/j100181a007

    Article  Google Scholar 

  26. A. I. Kuklin, A. Kh. Islamov, and V. I. Gordeliy, Neutron News 16 (3), 16 (2005). doi 10.1080/10448630500454361

    Article  Google Scholar 

  27. A. G. Soloviev, T. N. Murugova, A. Kh. Islamov, and A. I. Kuklin, J. Phys.: Conf. Ser. 351, 012027 (2012). doi 10.1088/1742-6596/351/1/012027

    Google Scholar 

  28. Yu. M. Ostanevich, Makromol. Chem., Macromol. Symp. 15, 91 (1988). doi 10.1002/masy.19880150107

    Article  Google Scholar 

  29. V. I. Gordeliy, V. Cherezov, and J. Teixeira, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 1 (2005). doi 10.1103/PhysRevE.72.061913

    Article  Google Scholar 

  30. Yu. E. Gorshkova, J. Optoelectron. Adv. Mater. 17 (9–10), 1532 (2015).

    Google Scholar 

  31. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-angle X-ray and Neutron Scattering (Plenum, New York, 1987). doi 10.1002/actp.1989.010400317

    Book  Google Scholar 

  32. V. I. Gordeliy, L. V. Golubchikova, A. I. Kuklin, A. G. Syrykh, and A. Watts, Prog. Colloid Polym. Sci. 93, 252 (1993). doi 10.1007/BFb0118537

    Article  Google Scholar 

  33. D. Uhríková, N. Kucerka, J. Teixeira, V. Gordeliy, and P. Balgavý, Chem. Phys. Lipids 155, 80 (2008). doi 10.1016/j.chemphyslip.2008.07.010

    Article  Google Scholar 

  34. Y. Inoko, T. Yamaguchi, K. Furuya, and T. Mitsui, Biochim. Biophys. Acta 413, 24 (1975). doi 10.1016/0005-2736(75)90055-3

    Article  Google Scholar 

  35. L. J. Lis, V. A. Parsegian, and R. P. Rand, Biochemistry 20, 1761 (1981). doi 10.1021/bi00510a010

    Article  Google Scholar 

  36. Y. Izumitani, J. Colloid Interface Sci. 166, 143 (1994). doi 10.1006/jcis.1994.1281

    Article  Google Scholar 

  37. Y. Izumitani, J. Colloid Interface Sci. 182, 6 (1996). doi 10.1006/jcis.1996.0431

    Article  Google Scholar 

  38. K. Akashi, H. Miyata, H. Itoh, and K. Kinosita, Biophys. J. 74, 2973 (1998). doi 10.1016/S0006-3495(98)78004-X

    Article  Google Scholar 

  39. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000). doi 10.1016/S0304-4157(00)00016-2

    Article  Google Scholar 

  40. H. Ohshima, Y. Inoko, and T. Mitsui, J. Colloid Interface Sci. 86 (1), 57 (1982). doi 10.1016/0021-9797(82)90041-8

    Article  Google Scholar 

  41. H. Hauser, Phospholipid Handbook (Marcel Dekker, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Gorshkova.

Additional information

Original Russian Text © Yu.E. Gorshkova, A.I. Kuklin, V.I. Gordeliy, 2016, published in Poverkhnost’, 2016, No. 11, pp. 34–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, Y.E., Kuklin, A.I. & Gordeliy, V.I. Structure and phase transitions of DMPC multilamellar vesicles in the presence of Ca2+ ions. J. Surf. Investig. 11, 27–37 (2017). https://doi.org/10.1134/S1027451016050499

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050499

Keywords

Navigation