Skip to main content
Log in

The power law of movement: an example of a behavioral illusion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The curved movements produced by living organisms follow a power law where the velocity of movement is a power function of the degree of curvature through which the movement is made. The exponent of the power function is close to either 1/3 or 2/3 depending on how velocity and curvature are measured. This power law is thought to reflect biological and/or kinematic constraints on how organisms produce movements. The present paper shows that the power law is actually a statistical artifact that results from mistaking a correlational for a causal relationship between variables. The power law implies that curvature influences the velocity of movement. In fact, the power law is a mathematical consequence of the way that these variables are calculated. The appearance that curvature affects the velocity of movement is shown to be an example of a “behavioral illusion” that results from ignoring the purpose of behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. While this is not a literal model of how the brain implements these control systems (it would surely require a hierarchy of such systems, for example), it is a useful description of the mechanism of control at the “computational level” (Marr 2010).

References

  • Catavitello G, Ivanenko YP, Lacquaniti F, Viviani P (2016) Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature. Exp Br Res 234(6): 1649–1657. doi:10.1007/s00221-016-4569-9

    Article  Google Scholar 

  • de’Sperati C, Viviani P (1997) The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. J Neurosci 17:3932–3945

    PubMed  Google Scholar 

  • Gribble PL, Ostry DJ (1996) Origins of the power law relation between movement velocity and curvature: modeling the effects of muscle mechanics and limb dynamics. J Neurophysiol 76(5):2853–2860

    CAS  PubMed  Google Scholar 

  • Hicheur H, Vieilledent MJE, Richardson T, Flash A, Berthoz (2005) Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp Br Res 162: 145–154. doi:10.1007/s00221-004-2122-8.

    Article  CAS  Google Scholar 

  • Huh D, Sejnowski T (2015) Spectrum of power laws for curved hand movements. P Natl Acad Sci USA 112(29):E3950–E3958. doi:10.1073/pnas.1510208112

    Article  CAS  Google Scholar 

  • Ivanenko YP, Grasso R, Macellari V, Lacquaniti F (2002) Two-thirds power law in human locomotion: role of ground contact forces. Neuroreport 13:1171–1174

    Article  PubMed  Google Scholar 

  • Karklinsky M, Flash T (2015) Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning. J Neurophysiol 113(7):2490–2499. doi:10.1152/jn.00421.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacquaniti F, Terzuolo C, Viviani P (1983) The law relating the kinematic and figural aspects of drawing movements. Acta Psychol 54(1):115–130

    Article  CAS  Google Scholar 

  • Marken, R. S. (1980) The Cause of Control Movements in a Tracking Task. Percept Motor Skills 51:755–758.

    Article  CAS  PubMed  Google Scholar 

  • Marken RS (1988) The nature of behavior: Control as fact and theory. Behav Sci 33:196–206

    Article  Google Scholar 

  • Marken RS (2001) Controlled Variables: Psychology as the Center Fielder Views It. Am J Psychol 114:259–281

    Article  CAS  PubMed  Google Scholar 

  • Marken RS (2002) Looking at behavior through control theory glasses. Rev Gener Psychol 6:260–270

    Article  Google Scholar 

  • Marken RS (2005) Optical Trajectories and the Informational Basis of Fly Ball Catching. J Exp Psychol Human Percept Perform 31:630–634

    Article  Google Scholar 

  • Marken RS (2014) Doing research on purpose: a control theory approach to experimental psychology. New View, St. Louis

    Google Scholar 

  • Marken RS, Horth B (2011) When causality does not imply correlation: more spadework at the foundations of scientific psychology. Psychol Rep 108:1–12

    Article  Google Scholar 

  • Marr D (2010) Vision: a computational investigation into the human representation and processing of visual information. MIT Press, Cambridge

    Book  Google Scholar 

  • Perrier P, Fuchs S (2008) Speed-curvature relations in speech production challenge the 1/3 power law. J Neurophysiol 100(3):1171–1183. doi:10.1152/jn.01116.2007

    Article  PubMed  Google Scholar 

  • Plamondon R, Guerfali W (1998) The 2/3 power law: when and why? Acta Psychol 100:85–96

    Article  CAS  Google Scholar 

  • Powers WT (1973a) Feedback: Beyond behaviorism. Science 179:351–356

    Article  CAS  PubMed  Google Scholar 

  • Powers, W. T. (1973b) Behaviorism and feedback control, Science 181: 1114,1116,1118–1120.

    Google Scholar 

  • Powers WT (1978) Quantitative analysis of purposive systems: Some spadework at the foundations of scientific psychology. Psychol Rev 85:417–435

    Article  Google Scholar 

  • Schaal S, Sternad D (2001) Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements. Exp Br Res 136:60–72. doi:10.1007/s002210000505.

    Article  CAS  Google Scholar 

  • Schwartz AB (1994) Direct cortical representation of drawing. Science 265(5171):540–542

    Article  CAS  PubMed  Google Scholar 

  • Shaffer DM, Marken RS, Dolgov I, Maynor AB (2013) Chasin’ choppers: using unpredictable trajectories to test theories of object interception. Atten Percept Psychol 75: 1496–1506. doi:10.3758/s13414-013-0500-7.

    Article  Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437

    Article  CAS  PubMed  Google Scholar 

  • Wann J, Nimmo-Smith I, Wing AM (1988) Relation between velocity and curvature in movement: Equivalence and divergence between a power law and a minimum-jerk model. J Exp Psychol Human 14(4):622

    Article  CAS  Google Scholar 

  • Willett ABS, Marken RS, Parker MG, Mansell W (2017) Control Blindness: Why People Can Make Incorrect Inferences about the Intentions of Others. Atten Percept Perform. doi:10.3758/s13414-016-1268-3

    Google Scholar 

  • Wooldridge, Jeffrey M. (2009) Omitted variable bias: the simple case. Introductory econometrics: a modern approach. Cengage Learning, Mason, pp 89–93

    Google Scholar 

  • Zago M, Lacquaniti F, Gomez-Marin A (2016) The speed–curvature power-law in Drosophila larval locomotion. Biol Lett 12:20160597. doi:10.1098/rsbl.2016.0597

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Marken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marken, R.S., Shaffer, D.M. The power law of movement: an example of a behavioral illusion. Exp Brain Res 235, 1835–1842 (2017). https://doi.org/10.1007/s00221-017-4939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4939-y

Keywords

Navigation