Skip to main content
Log in

Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In neurons of patients with Alzheimer’s disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer’s disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Hutton and J. Hardy, The presenilins and Alzheimer’s disease, Hum. Mol. Genet. 6(10), 1639 (1997)

    Article  Google Scholar 

  2. J. Hardy, A hundred years of Alzheimer’s disease research, Neuron 52(1), 3 (2006)

    Article  Google Scholar 

  3. F. M. LaFerla and S. Oddo, Alzheimer’s disease: Abeta, tau and synaptic dysfunction, Trends Mol. Med. 11(4), 170 (2005)

    Article  Google Scholar 

  4. M. P. Mattson, Pathways towards and away from Alzheimer’s disease, Nature 430(7000), 631 (2004)

    Article  ADS  Google Scholar 

  5. C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell Biol. 8(2), 101 (2007)

    Article  Google Scholar 

  6. J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297(5580), 353 (2002)

    Article  ADS  Google Scholar 

  7. F. M. LaFerla, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease, Nat. Rev. Neurosci. 3(11), 862 (2002)

    Article  Google Scholar 

  8. I. F. Smith, K. N. Green, and F. M. LaFerla, Calcium dysregulation in Alzheimer’s disease: Recent advances gained from genetically modified animals, Cell Calcium 38(3–4), 427 (2005)

    Article  Google Scholar 

  9. J. Herms, I. Schneider, I. Dewachter, N. Caluwaerts, H. Kretzschmar, and F. Van Leuven, Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein, J. Biol. Chem. 278(4), 2484 (2003)

    Article  Google Scholar 

  10. M. A. Leissring, B. A. Paul, I. Parker, C. W. Cotman, and F. M. LaFerla, Alzheimer’s presenilin-1 mutation potentiates inositol 1, 4, 5-trisphosphate-mediated calcium signaling in Xenopus oocytes, J. Neurochem. 72(3), 1061 (1999)

    Article  Google Scholar 

  11. I. F. Smith, B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla, Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease, J. Neurochem. 94(6), 1711 (2005)

    Article  Google Scholar 

  12. G. E. Stutzmann, Calcium dysregulation, IP3 signaling, and Alzheimer’s disease, Neuroscientist 11(2), 110 (2005)

    Article  Google Scholar 

  13. G. E. Stutzmann, A. Caccamo, F. M. LaFerla, and I. Parker, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability, J. Neurosci. 24(2), 508 (2004)

    Article  Google Scholar 

  14. J. K. Foskett, C. White, K. H. Cheung, and D. O. D. Mak, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev. 87(2), 593 (2007)

    Article  Google Scholar 

  15. M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signaling: Dynamics, homeostasis and remodeling, Nat. Rev. Mol. Cell Biol. 4(7), 517 (2003)

    Article  Google Scholar 

  16. K. N. Green, A. Demuro, Y. Akbari, B. D. Hitt, I. F. Smith, I. Parker, and F. M. LaFerla, SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production, J. Cell Biol. 181(7), 1107 (2008)

    Article  Google Scholar 

  17. S. Chakroborty, I. Goussakov, M. B. Miller, and G. E. Stutzmann, Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice, J. Neurosci. 29(30), 9458 (2009)

    Article  Google Scholar 

  18. G. E. Stutzmann, I. Smith, A. Caccamo, S. Oddo, F. M. Laferla, and I. Parker, Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice, J. Neurosci. 26(19), 5180 (2006)

    Article  Google Scholar 

  19. H. Qi and J. Shuai, Alzheimer’s disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum–mitochondrial distance, Med. Hypotheses. 89, 28 (2016)

    Article  Google Scholar 

  20. H. Qi, L. Li, and J. Shuai, Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations, Sci. Rep. 5, 7984 (2015)

    Article  ADS  Google Scholar 

  21. N. Hirashima, R. Etcheberrigaray, S. Bergamaschi, M. Racchi, F. Battaini, G. Binetti, S. Govoni, and D. L. Alkon, Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging. 17(4), 549 (1996)

    Article  Google Scholar 

  22. E. Ito, K. Oka, R. Etcheberrigaray, T. J. Nelson, D. L. McPhie, B. Tofel-Grehl, G. E. Gibson, and D. L. Alkon, Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91(2), 534 (1994)

    Article  ADS  Google Scholar 

  23. K. H. Cheung, D. Shineman, M. Muller, C. Cardenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V. M. Lee, and J. K. Foskett, Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating, Neuron. 58(6), 871 (2008)

    Article  Google Scholar 

  24. K. H. Cheung, L. Mei, D. O. D. Mak, I. Hayashi, T. Iwatsubo, D. E. Kang, and J. K. Foskett, Gain-offunction enhancement of InsP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in humancells and mouse neurons, Sci. Signal. 3(114), ra22 (2010)

    Article  Google Scholar 

  25. G. W. De Young, and J. Keizer, A single-pool inositol 1, 4, 5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA 89(20), 9895 (1992)

    Article  ADS  Google Scholar 

  26. J. Sneyd and J. Dufour, A dynamic model of the type-2 inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 99(4), 2398 (2002)

    Article  ADS  Google Scholar 

  27. D. O. D. Mak, S. M. J. McBride, and J. K. Foskett, Spontaneous channel activity of the inositol 1, 4, 5- trisphosphate (InsP3) receptor (InsP3R): Application of allosteric modeling to calcium and InsP3 regulation of InsP3R single-channel gating, J. Gen. Physiol. 122(5), 583 (2003)

    Article  Google Scholar 

  28. J. Shuai, J. E. Pearson, J. K. Foskett, D. O. D. Mak, and I. Parker, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophys. J. 93(4), 1151 (2007)

    Article  ADS  Google Scholar 

  29. J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP3R channel in Xenopus oocyte, Chaos 19(3), 037105 (2009)

    Article  ADS  Google Scholar 

  30. G. Ullah, D. O. Daniel Mak, and J. E. Pearson, A datadriven model of a modal gated ion channel: The inositol 1, 4, 5-trisphosphate receptor in insect Sf9 cells, J. Gen. Physiol. 140(2), 159 (2012)

    Article  Google Scholar 

  31. B. A. Bicknell, and G. J. Goodhill, Emergence of ion channel modal gating from independent subunit kinetics, Proc. Natl. Acad. Sci. USA 113(36), E5288 (2016)

    Article  Google Scholar 

  32. L. Ionescu, C. White, K. H. Cheung, J. Shuai, I. Parker, J. E. Pearson, J. K. Foskett, and D. O. D. Mak, Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels, J. Gen. Physiol. 130(6), 631 (2007)

    Article  Google Scholar 

  33. D. O. D. Mak, J. E. Pearson, K. P. C. Loong, S. Datta, M. Fernández-Mongil, and J. K. Foskett, Rapid ligand-regulated gating kinetics of single inositol 1, 4, 5-trisphosphate receptor Ca2+ release channels, EMBO Rep. 8(11), 1044 (2007)

    Article  Google Scholar 

  34. G. Ullah, A. Demuro, I. Parker, and J. E. Pearson, Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology, PLoS One 10(9), e0137357 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 31370830 and 11675134), the 111 Project (Grant No. B16029), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Shuai.

Additional information

Special Topic: Soft-Matter Physics and Complex Systems (Ed. Zhi-Gang Zheng).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, F., Li, X., Cai, M. et al. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells. Front. Phys. 12, 128702 (2017). https://doi.org/10.1007/s11467-017-0670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0670-1

Keywords

Navigation