Skip to main content
Log in

Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability

  • Global Change and Conservation Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The variation of plant water use efficiency (WUE) with water availability has two interacting components: a plastic response, evident when individuals of the same genotype are compared (e.g. wet versus dry years), and an interspecific response, evident when different species living in habitats with different water availability are compared. We analysed the WUE of 25 Patagonian species that belong to four life forms (grasses, shrubs, annual herbs and perennial herbs) in relation to the climatic conditions of 2 years and the mean historic water availability experienced by each species. To estimate water availability, we calculated the effective soil water potential (EWP) of each species, based on available information about soil water dynamics, phenology and root system structure. To estimate WUE, we used isotopic discrimination of leaf C (Δ13C) and mean annual water vapour difference between leaves and atmosphere (Δe) measured in situ. For the plastic response, for every species and life form, WUE increased from the dry to the wet year. We hypothesize that photosynthesis was less nutrient limited in the wet than in the dry year, facilitating higher net photosynthesis rates per unit of stomatal conductance in the wet year. For the interspecific response, WUE was lower in species native to drier habitats than in species native to wetter habitats. This response was mostly accounted for by a decrease in Δe with EWP. Annual herbs, which avoid drought in time (they have the earliest growth cycle), and shrubs, which avoid drought in space (they have the deepest roots), showed the highest EWP and WUE. We conclude that the conventional wisdom which states that the highest WUE occurs within a species during the driest years, and among species in the driest habitats, does not always hold true, and that co-existing life forms drastically differ in water availability and water economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin AT, Yahdjian L, Stark J, Belnap J, Porporato A, Norton U, Ravetta D, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Beltrán AB (1997) Caracterización microclimática del Distrito Occidental de la estepa patagónica. Maestría en Agrometeorología. University of Buenos Aires

  • Cohen D (1970) The expected eficiency of water utilization in plants under different competition and selection regimes. Isr J Bot 19:50–54

    Google Scholar 

  • Crombie DS, Tippett JT, Hill TC (1988) Dawn water potential and root depth of trees and understorey species in south-western Australia. Aust J Bot 36:621–631

    Article  Google Scholar 

  • Dawson T, Mambelli S, Plamboeck A, Templer P, Tu K (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • De Lucia EH, Heckathorn SA (1989) The effect of soil drought on water-use efficiency in a contrasting Great Basin desert and Sierran montane species. Plant Cell Environ 12:935–940

    Article  Google Scholar 

  • De Lucia EH, Schlesinger WH (1991) Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants. Ecology 72:51–58

    Article  Google Scholar 

  • Donovan LA, Ehleringer JR (1992) Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct Ecol 6:482–488

    Article  Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Cooper TA (1988) Correlation between carbon isotope ratio and microhabitat in desert plants. Oecologia 76:562–566

    Article  PubMed  Google Scholar 

  • Ehleringer JR, Phillips SL, Comstock JP (1992) Seasonal variation in the carbon isotope composition of desert plants. Funct Ecol 6:396–404

    Article  Google Scholar 

  • Eissenstat DM (1997) Trade-offs in root form and function. In: Jackson LE (ed) Ecology in agriculture. Academic Press, San Diego, Calif., pp 173–199

    Chapter  Google Scholar 

  • Erskine PD, Stewart GR, Schmidt S, Turnbull MH, Unkovich M, Pate JS (1996) Water availability—a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant Cell Environ 19:1149–1159

    Article  CAS  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Fernández RJ, Paruelo JM (1988) Root systems of two Patagonian shrubs: a quantitative description using a geometrical method. J Range Manage 41:220–223

    Article  Google Scholar 

  • Fernández RJ, Sala OE, Golluscio RA (1991) Woody and herbaceous aboveground production of a Patagonian steppe. J Range Manage 44:434–437

    Article  Google Scholar 

  • Field C, Merino J, Mooney HA (1983) Compromises between water-use efficiency, and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–389

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Annu Rev Plant Physiol 29:277–317

    Article  CAS  Google Scholar 

  • Forseth IN, Ehleringer JR, Werk KS, Cook CS (1984) Field water relations of Sonoran desert annuals. Ecology 65:1436–1444

    Article  Google Scholar 

  • French N, Sauer RH (1974) Phenological studies and modelling in grasslands. In: Lieth H (ed) Phenology and seasonality modelling. Ecological studies. Analysis and synthesis, vol 8. Springer, Berlin, pp 227–236

    Google Scholar 

  • Garten CT, Taylor GE (1992) Foliar δ 13C within a temperate deciduous forest: spatial, temporal and species sources of variation. Oecologia 90:1–7

    Article  PubMed  Google Scholar 

  • Golluscio RA (2005) Dimensiones de la heterogeneidad a nivel de comunidad: profundidad radical y fenología en 25 especies patagónicas. In: Oesterheld M, Aguiar M, Ghersa C, Paruelo J (eds) La heterogeneidad de la vegetación de los agroecosistemas. Editorial Facultad de Agronomía, UBA

  • Golluscio RA, Sala OE (1993) Plant functional types and ecological strategies in Patagonian forbs. J Veg Sci 4:839–846

    Article  Google Scholar 

  • Golluscio RA, León RJC, Perelman SB (1982) Caracterización fitosociológica de la estepa del Oeste de Chubut: su relación con el gradiente ambiental. Bol Soc Argent Bot 21:299–324

    Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25

    Article  CAS  PubMed  Google Scholar 

  • Golluscio RA, Oesterheld M, Aguiar MR (2005) Phenology of twenty five Patagonian species related to their life form. Ecography 28:273–282

    Article  Google Scholar 

  • Golluscio RA, Faigón A, Tanke M (2006) Spatial distribution of roots and nodules, and δ15N evidences of nitrogen fixation in Adesmia volckmanni, a Patagonian leguminous shrub. J Arid Environ 67:328–335

    Article  Google Scholar 

  • Gutiérrez MV, Meinzer FC (1994) Carbon isotope discrimination and photosynthetic gas exchange in coffee hedgerows during canopy development. Aust J Plant Physiol 21:207–219

    Article  Google Scholar 

  • Hoffmann AJ, Walker MJ (1980) Growth habits and phenology of drought-deciduous species in an altitudinal gradient. Can J Bot 58:1789–1796

    Article  Google Scholar 

  • Jackson L, Bliss LC (1984) Phenology and water relations of three plant life forms in a dry tree-line meadow. Ecology 65:1302–1314

    Article  Google Scholar 

  • Jobbágy EG, Sala OE (2000) Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol Appl 10:541–549

    Article  Google Scholar 

  • Lajtha K, Getz J (1993) Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New Mexico. Oecologia 94:95–101

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York, Berlin, Heildelberg, p 540

    Book  Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403

    Article  CAS  PubMed  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8:125–144

    Google Scholar 

  • Lin G, Phillips SL, Ehleringer JR (1996) Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau. Oecologia 106:8–17

    Article  PubMed  Google Scholar 

  • Montenegro G, Aljaro ME, Kummerow J (1979) Growth dynamics of Chilean matorral shrubs. Bot Gaz 140:114–119

    Article  Google Scholar 

  • Mooney HA, Dunn EI (1970) Photosynthetic systems of mediterranean climate shrubs and trees of California and Chile. Am Nat 104:447–453

    Article  Google Scholar 

  • Mooney HA, Ehleringer JR, Berry JA (1976) High photosinthetic capacity of a winter annual in Death Valley. Science 194:322–323

    Article  CAS  PubMed  Google Scholar 

  • Neales TF, Patterson AA, Hartney VJ (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature 219:469–472

    Article  Google Scholar 

  • Paruelo JM, Aguiar MR, Golluscio RA (1988) Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Soil Res Rehabil 2:67–74

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK, Burke IC, Sala OE (1999) Grassland precipitation use efficiency varies accross a resource gradient. Ecosystems 2:64–68

    Article  Google Scholar 

  • Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal sage communities. Ecology 56:1118–1128

    Article  Google Scholar 

  • Sala OE, Lauenroth WK, Parton WJ, Trlica MJ (1981) Water status of soil and vegetation in a shortgrass steppe. Oecologia 48:327–331

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–505

    Article  CAS  PubMed  Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Article  Google Scholar 

  • Schleser GH (1990) Investigations of the δ13C pattern in leaves of Fagus sylvatica L. J Exp Bot 41:565–572

    Article  CAS  Google Scholar 

  • Schulze E-D, Mooney HA, Sala OE, Jobbágy EG, Buchmann N, Bauer G, Canadell J, Jackson RB, Loreti J, Oesterheld M, Ehleringer JR (1996) Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503–511

    Article  Google Scholar 

  • Sigal Escalada V (1997) Adaptaciones de las plantas patagónicas a suelos de distinta textura: xerofitismo versus productividad. Trabajo de Intensificación. Facultad de Agronomía (UBA)

  • Sinclair TR, CB Tanner, Bennett JM (1984) Water-use efficiency in crop production. Bioscience 34:36–40

    Article  Google Scholar 

  • Smedley MP, Dawson TE, Comstock JP, Donovan LA, Sherrill DE, Cook CS, Ehleringer JR (1991) Seasonal carbon isotope discrimination in a grassland community. Oecologia 85:314–320

    Article  PubMed  Google Scholar 

  • Soriano A (1956) Los distritos florísticos de la Provincia Patagónica. Rev Invest Agropec 10:323–347

    Google Scholar 

  • Soriano A, Sala OE (1983) Ecological strategies in a Patagonian arid steppe. Vegetatio 56:9–15

    Article  Google Scholar 

  • Soriano A, Golluscio RA, Satorre EH (1987) Spatial heterogeneity of the root systems of grasses in the Patagonian arid steppe. Bull Torrey Bot Club 114:103–108

    Article  Google Scholar 

  • StatSoft (1995) STATISTICA for Windows. StatSoft, Tulsa, Okla.

  • Toft NL, Anderson JE, Nowak RS (1989) Water use efficiency and carbon isotope composition of plants in a cold desert environment. Oecologia 80:11–18

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, Scarascia Mugnozza GE, Ehleringer JR (1992) Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem. Funct Ecol 6:627–631

    Article  Google Scholar 

  • Yahdjian L, Sala OE, Austin AT (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe. Ecosystems 9:128–141

    Article  CAS  Google Scholar 

  • Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127:476–486

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the initial encouragement of Alberto Soriano, and suggestions by A. J. Hall, R. J. Fernández, M. Bertiller, S. Díaz, R. A. Distel, R. J. C. León, R. A. Sánchez, and three anonymous reviewers. J. C. Villardi and several students helped us with the field and laboratory work. Special thanks to INTA for permission to work in the Experimental Field of Río Mayo, and to Fundación Bunge y Born, ANPCYT (PICT 15124/03), UBA (G044), and CONICET (PIP 0326/98, 5963/04) for the grants supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Golluscio.

Additional information

Communicated by Russell Monson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golluscio, R.A., Oesterheld, M. Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability. Oecologia 154, 207–217 (2007). https://doi.org/10.1007/s00442-007-0800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0800-5

Keywords

Navigation