Skip to main content
Log in

Extraction of digital terrain model based on regular mesh generation in mountainous areas

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Airborne LiDAR technology is a popular technique to quickly acquire high-precision information of the ground and the objects above it. Moreover, filtering the data is one of the necessary core processing steps. In recent years, many algorithms have been derived from traditional filtering algorithms. However, when applied to LiDAR data obtained from mountainous regions, most algorithms generate numerous omissions and errors when attempting to retain steep terrain features and filter vegetation information. This paper aims to quickly and accurately extract the digital terrain model (DTM) in mountainous regions. To accomplish this goal, a filtering algorithm based on a regular mesh generation strategy is proposed. The proposed algorithm initially divides the huge amount of point cloud data into strips and selects the appropriate spacing to subdivide each strip into equidistant grid data. The grid data is used as the input to an iterative polynomial fitting process, after which the point cloud is classified based on a controlled threshold. The experimental results show that the proposed method can quickly and efficiently classify data of mountains with different characteristics while retaining terrain feature information better than other algorithms. The average accuracy of recognition is greater than 92%. In addition, this algorithm also applies to mountains with lush vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Axelsson PE (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 32:110–117

    Google Scholar 

  2. Bao YF, Cao CX, Hao Z et al (2008) Synchronous estimation of DTM and fractional vegetation cover in forested area from airborne LIDAR height and intensity data. Sci China 51(S2):176–187

    Article  Google Scholar 

  3. Chaib S, Gu Y, Yao H, et al (2016) A VHR scene classification method integrating sparse PCA and saliency computing[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2016 I.E. International. IEEE. 2742-2745.

  4. Chen Q (2009) Improvement of the edge-based morphological (EM) method for lidar data filtering. Int J Remote Sens 30(4):1069–1074

    Article  Google Scholar 

  5. Chen Q, Gong P, Baldocchi D et al (2007) Filtering airborne laser scanning data with morphological methods. Photogramm Eng Remote Sens 73(2):175–185

    Article  Google Scholar 

  6. Chen C, Li Y, Li W et al (2013) A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. ISPRS J Photogramm Remote Sens 82(82):1–9

    Google Scholar 

  7. Chen Q, Wang H, Zhang H, et al. (2016) A point cloud filtering approach to generating dtms for steep mountainous areas and adjacent residential areas. Remote Sens 8(1).

  8. Clark ML, Clark DB, Roberts DA (2004) Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ 91(1):68–89

    Article  Google Scholar 

  9. Cobby DM, Mason DC, Davenport IJ (2001) Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS J Photogramm Remote Sens 56(2):121–138

    Article  Google Scholar 

  10. Hui Z, Hu Y, Yevenyo Y et al (2016) An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level kriging interpolation. Remote Sens 8(5):1–16

    Google Scholar 

  11. Ji R, Gao Y, Hong R et al (2014) Spectral-spatial constraint hyperspectral image classification[J]. IEEE Trans Geosci Remote Sens 52(3):1811–1824

    Article  Google Scholar 

  12. Jody I, American, Golden, et al. Golden Software[J]. Cred Press, 2011.

  13. Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53(4):193–203

    Article  Google Scholar 

  14. Li Y, Wu H, Xu H et al (2013) A gradient-constrained morphological filtering algorithm for airborne LiDAR. Opt Laser Technol 54(32):288–296

    Article  Google Scholar 

  15. Li Y, Yong B, Wu H et al (2014a) An improved top-hat filter with sloped brim for extracting ground points from airborne Lidar point clouds. Remote Sens 6(12):12885–12908

    Article  Google Scholar 

  16. Li Y, Yong B, Wu H et al (2014b) Filtering airborne Lidar data by modified white top-hat transform with directional edge constraints. Photogramm Eng Remote Sens 80(2):133–141

    Article  Google Scholar 

  17. Lin X, Zhang J (2014) Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments. Remote Sens 6(2):1294–1326

    Article  Google Scholar 

  18. Lohmann P, Koch A, Schaeffer M (2000) Approaches to the filtering of laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 33:540–547

    Google Scholar 

  19. Maguya A, Junttila V, Kauranne T (2014) Algorithm for extracting digital terrain models under Forest canopy from airborne LiDAR data. Remote Sens 6(7):6524–6548

    Article  Google Scholar 

  20. Meng X, Wang L, Silván-Cárdenas JL et al (2009) A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS J Photogramm Remote Sens 64(1):117–124

    Article  Google Scholar 

  21. Meng X, Currit N, Zhao K (2010) Ground filtering algorithms for airborne LiDAR data: a review of critical issues. Remote Sens 2(3):833–860

    Article  Google Scholar 

  22. Mongus D, Žalik B (2012) Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS J Photogramm Remote Sens 67(1):1–12

    Article  Google Scholar 

  23. Pfeifer N, Peiter T, Briese C, Rieger W (1996) Interpolation of high quality ground models from laser scanner data in forested areas. Int Arch Photogramm Remote Sens 31:383–388

    Google Scholar 

  24. Sithole G (2001) Filtering of laser altimetry data using a slope adaptive filter. Int Arch Photogramm Remote Sens Spat Inf Sci 34:203–210

    Google Scholar 

  25. Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds ☆. ISPRS J Photogramm Remote Sens 59(1–2):85–101

    Article  Google Scholar 

  26. Sithole G, Vosselman G. Report: ISPRS comparison of filters[J]. ISPRS commission III, working group, 2003, 3.

  27. Streutker DR, Glenn NF (2006) LiDAR measurement of sagebrush steppe vegetation heights. Remote Sens Environ 102(s 1–2):135–145

    Article  Google Scholar 

  28. Susaki J (2012) Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation. Remote Sens 4(4):1804–1819

    Article  Google Scholar 

  29. Soininen A. Terra scan for microstation[J]. User’s guide, 1999.

  30. Vosselman G (2000) Slope based filtering of laser altimetry data. Int Arch Photogramm Remote Sens 33(B3/2; PART 3):935–942.

  31. Wang C K, Tseng Y H. DEM gemeration from airborne lidar data by an adaptive dualdirectional slope filter[J]. 2010, 38.

  32. Wang W, Cui Z, Yan Y, et al. (2016a) Recurrent face aging[C]// CVPR 2016 I.E. conference on computer vision and pattern recognition 2016 Las Vegas, USA

  33. Wang W, Yan Y, Winkler S et al (2016b) Category specific dictionary learning for attribute specific feature selection. IEEE Trans Image Process 25(3):1465–1478

    Article  MathSciNet  Google Scholar 

  34. Wang W, Yan Y, Zhang L, et al. (2016c) Collaborative sparse coding for multiview action recognition 23(4):80–87.

  35. Yan C, Zhang Y, Xu J et al (2014a) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  36. Yan C, Zhang Y, Xu J et al (2014b) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  37. Yan C, Zhang Y, Dai F et al (2014c) Parallel deblocking filter for HEVC on many-core processor. Electron Lett 50(5):367–368

    Article  Google Scholar 

  38. Zhang J, Lin X (2013) Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS J Photogramm Remote Sens 81(81):44–59

    Article  Google Scholar 

  39. Zhang K, Chen SC, Whitman D et al (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans Geosci Remote Sens 41(4):872–882

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific and Technological Development Scheme of Jilin Province (Grant No. 20140520071JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Han, D., Li, H. et al. Extraction of digital terrain model based on regular mesh generation in mountainous areas. Multimed Tools Appl 77, 6267–6286 (2018). https://doi.org/10.1007/s11042-017-4535-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4535-y

Keywords

Navigation