Skip to main content
Log in

From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Reach-to-grasp arm postures differ from those in pure reaching because they are affected by grasp position/orientation, rather than simple transport to a position during a reaching motion. This paper investigates this difference via an analysis of experimental  data collected on reaching and reach-to-grasp motions. A seven-degree-of-freedom (DOFs) kinematic arm model with the swivel angle is used for the motion analysis. Compared to a widely used anatomical arm model, this model distinguishes clearly the four grasping-relevant DOFs (GR-DOFs) that are affected by positions and orientations of the objects to be grasped. These four GR-DOFs include the swivel angle that measures the elbow rotation about the shoulder–wrist axis, and three wrist joint angles. For each GR-DOF, we quantify position vs orientation task-relevance bias that measures how much the DOF is affected by the grasping position vs orientation. The swivel angle and forearm supination have similar bias, and the analysis of their motion suggests two hypotheses regarding the synergistic coordination of the macro- and micro-structures of the human arm (1) DOFs with similar task-relevance are synergistically coordinated; and (2) such synergy breaks when a task-relevant DOF is close to its joint limit without necessarily reaching the limit. This study provides a motion analysis method to reduce the control complexity for reach-to-grasp tasks, and suggests using dynamic coupling to coordinate the hand and arm of upper-limb exoskeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asada H, Granito J (1985) Kinematic and static characterization of wrist joints and their optimal design. In: ICRA 1985. St. Louis, Missouri, March 1985, pp 244–250

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Catalano M, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the pisa/iit softhand. Brain 33(5):768–782

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Routledge

  • Davids K, Bennett S, Newell KM (2006) Movement system variability. Human kinetics, Champaign

  • Fan J, He J, Tillery S (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171(3):283–296

    Article  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurophysiol 5:1688–1703

    CAS  Google Scholar 

  • Glasauer S (2010) Interacting in time and space: investigating human–human and human–robot joint action. In: RO-MAN, Viareggio, Italy. Sept. 2010, pp 252–257

  • Haggard P, Wing A (2001) On the hand transport component of prehensile movements. Curr Biol 29(3):282–287

    Google Scholar 

  • Haustein W (1989) Considerations on listing’s law and the primary position by means of a matrix description of eye position control. Biol Cybern 60(6):411–420

    Article  CAS  PubMed  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(2):2745–2754

    CAS  PubMed  Google Scholar 

  • Huang J, Hara M, Yabuta T (2010) Controlling a finger-arm robot to emulate the motion of the human upper limb by regulating finger manipulability. In: Motion control, Casolo F (ed) INTECH. pp 773–792

  • Ingram J, Kording K, Howard I, Wolpert D (2008) The statistics of natural hand movements. Exp Brain Res 188(2):223–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang T, He J, Tillery SIH (2005) Determining natural arm configuration along a reaching trajectory. Exp Brain Res 167:352–361

    Article  PubMed  Google Scholar 

  • Khatib O (1995) Inertial properties in robotic manipulation: an object-level framework. IJRR 5:19–36

    Google Scholar 

  • Kim H (2014) Systematic control and application for 7 dof upper-limb exoskeleton, Ph.D. dissertation. University of California, Santa Cruz

  • Kim H, Miller L, Rosen J (2011) Redundancy resolution of a human arm for controlling a seven dof wearable robotic system. In: EMBC 2011, Boston, USA, Auguest 2011

  • Kupferberg A, Glasauer S, Huber M, Rickert M, Knoll A, Brandt T (2011) Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI Soc 26(4):339–345

    Article  Google Scholar 

  • Latash M (2008) Synergy, 1st edn. Oxford University Press, USA

    Book  Google Scholar 

  • Latash M (2010) Motor synergies and the equilibrium-point hypothesis. Motor Control 14(3):294–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Gray K, Roldan J, Roldan J, Milutinovic D, Rosen J (2014) The joint coordination in reach-to-grasp movements. In: IROS. Chicago, IL. Sept. 2014, pp 906–911

  • Li Z, Roldan J, Milutinović D, Rosen J (2014) Task-relevance of grasping-related degrees of freedom in reach-to-grasp movements. In: Conf Proc IEEE Eng Med Biol Soc. Chicago, IL, Aug. 2014, pp 6903–6906

  • Liu M, Xiong C (2014) Synergistic characteristic of human hand during grasping tasks in daily life. Intell Robot Appl 8917:67–76

    Google Scholar 

  • Mason C, Gomez J, Ebner T (2001) Hand synergies during reach-to-grasp. J Neurophysiol 86(6):2896–2910

    CAS  PubMed  Google Scholar 

  • Li Z, Milutinovic D, Rosen J (2015) Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements. IEEE Trans Neural Syst Rehabil Eng 23(6):1020–1030

    Google Scholar 

  • Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. IJRR 6:3–15

    Google Scholar 

  • Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155

    CAS  PubMed  Google Scholar 

  • Santello M, Flanders M, Soechting J (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    CAS  PubMed  Google Scholar 

  • Santello M, Baud-Bovy G, Jorntell H (2013) Neural bases of hand synergies. Front Comput Neurosci 7:83–90

    Article  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Expe Brain Res 126(3):289–306

    Article  CAS  Google Scholar 

  • Sciavicco L (1987) A dynamic solution to the inverse kinematic problem for redundant manipulators. In: ICRA, vol. 4. Raleigh, NC, USA, Mar. 1987, pp 1081–1087

  • Sciavicco L (1988) A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE Trans Robot Automat 4(4):403–410

    Article  Google Scholar 

  • Simkins M, Al-Refai A, Rosen J (2014) Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations. IEEE Trans Neural Syst Rehabil Eng 22(3):491–500

    Article  PubMed  Google Scholar 

  • Smeets J, Brenner E (1999) A new view on grasping. Motor Control 3:237–271

    Article  CAS  PubMed  Google Scholar 

  • Soechting J, Buneo C, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does donders’ law apply to arm movement? J Neurosci 15(9):6271–6280

    CAS  PubMed  Google Scholar 

  • Soechting J, Flanders M (1993) Parallel, interdependent channels for location and orientation in sensorimotor transformations for reaching and grasping. J Neurophysiol 70(3):1137–1150

    CAS  PubMed  Google Scholar 

  • Tillery S, Ebner T, Soechting J (1995) Task dependence of primate arm postures. Exp Brain Res 104(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Turvey MT (2007) Action and perception at the level of synergies. Hum Mov Sci 26:657–697

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement—minimum torque-change model. Biol Cybern 61:89–101

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Zhang M, Huang C, Jin D (2002) Synergic analysis of upper limb target-reaching movements. J Biomech 35:739–746

    Article  PubMed  Google Scholar 

  • Yoshikawa T (1990) Foundations of robotics: analysis and control. The MIT Press

  • Yoshikawa T (1985) Dynamic manipulability of robot manipulators. In: IEEE International Conference on Robotics and Automation, St. Louis, Missouri, USA, March 1985, pp 1033–1038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Milutinović, D. & Rosen, J. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy. Exp Brain Res 235, 1627–1642 (2017). https://doi.org/10.1007/s00221-017-4890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4890-y

Keywords

Navigation