Skip to main content

Advertisement

Log in

Localization and pneumococcal alteration of junction proteins in the human alveolar–capillary compartment

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal–to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bättig P, Muhlemann K (2008) Influence of the spxB gene on competence in Streptococcus pneumoniae. J Bacteriol 190:1184–1189

    Article  PubMed  Google Scholar 

  • Bazzoni G (2006) Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 95:36–42

    CAS  PubMed  Google Scholar 

  • Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36:1803–1809

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Goncalves MA (2016) Engineered viruses as genome editing devices. Mol Ther J Am Soc of Gene Ther 24:447–457

    Article  CAS  Google Scholar 

  • Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JG, Jacobson JR (2014) Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol 50:328–336

    PubMed  PubMed Central  Google Scholar 

  • Chu LY, Wang YF, Cheng HH, Kuo CC, Wu KK (2016) Endothelium-derived 5-methoxytryptophan protects endothelial barrier function by blocking p38 MAPK Activation. PloS One 11:e0152166

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK (2010) Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res 107:959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lisle RC (2014) Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 355:131–142

    Article  PubMed  Google Scholar 

  • Dietert K, Mundhenk L, Erickson NA, Reppe K, Hocke AC, Kummer W, Witzenrath M, Gruber AD (2015) Murine CLCA5 is uniquely expressed in distinct niches of airway epithelial cells. Histochem Cell Biol 143:277–287

    Article  CAS  PubMed  Google Scholar 

  • Drijkoningen JJ, Rohde GG (2014) Pneumococcal infection in adults: burden of disease. Clin Microbiol Infect 20:45–51

    Article  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, DiGeronimo RJ, Arthur DE, King JM (2009) Remodeling of the tight junction during recovery from exposure to hydrogen peroxide in kidney epithelial cells. Free Radic Biol Med 47:1561–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold S, Gabrielli NM, Vadasz I (2013) Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 305:L665–L681

    Article  CAS  PubMed  Google Scholar 

  • Hocke AC, Becher A, Knepper J, Peter A, Holland G, Tonnies M, Bauer TT, Schneider P, Neudecker J, Muth D, Wendtner CM, Ruckert JC, Drosten C, Gruber AD, Laue M, Suttorp N, Hippenstiel S, Wolff T (2013) Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am J Respir Crit Care Med 188:882–886

    Article  PubMed  Google Scholar 

  • Horie S, Masterson C, Devaney J, Laffey JG (2016) Stem cell therapy for acute respiratory distress syndrome: a promising future? Curr Opin Crit Care 22:14–20

    Article  PubMed  Google Scholar 

  • Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z (2014) Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol 307:L524–L536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk A, Campbell S, Bass P, Mason J, Collins J (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25:2107–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knepper J, Schierhorn KL, Becher A, Budt M, Tonnies M, Bauer TT, Schneider P, Neudecker J, Ruckert JC, Gruber AD, Suttorp N, Schweiger B, Hippenstiel S, Hocke AC, Wolff T (2013) The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue. MBio 4:e00601–00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Koda R, Zhao L, Yaoita E, Yoshida Y, Tsukita S, Tamura A, Nameta M, Zhang Y, Fujinaka H, Magdeldin S, Xu B, Narita I, Yamamoto T (2011) Novel expression of claudin-5 in glomerular podocytes. Cell Tissue Res 343:637–648

    Article  CAS  PubMed  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  CAS  PubMed  Google Scholar 

  • Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 14:460–466

    Article  CAS  PubMed  Google Scholar 

  • Koval M (2013) Claudin heterogeneity and control of lung tight junctions. Annu Rev Physiol 75:551–567

    Article  CAS  PubMed  Google Scholar 

  • Laakkonen JP, Lappalainen JP, Theelen TL, Toivanen PI, Nieminen T, Jauhiainen S, Kaikkonen MU, Sluimer JC, Yla-Herttuala S (2016) Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis 20:109–124

    Article  PubMed  Google Scholar 

  • LaFemina MJ, Rokkam D, Chandrasena A, Pan J, Bajaj A, Johnson M, Frank JA (2010) Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 299:L724–L734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, Frank JA (2014) Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol 51:550–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z (2014a) Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol 51:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Singh S, Potula R, Persidsky Y, Kanmogne GD (2014b) Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-gamma. Am J Respir Crit Care Med 190:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linares GR, Brommage R, Powell DR, Xing W, Chen ST, Alshbool FZ, Lau KH, Wergedal JE, Mohan S (2012) Claudin 18 is a novel negative regulator of bone resorption and osteoclast differentiation. J Bone mineral Res 27:1553–1565

    Article  CAS  Google Scholar 

  • Liu KM, Chuang SM, Long CY, Lee YL, Wang CC, Lu MC, Lin RJ, Lu JH, Jang MY, Wu WJ, Ho WT, Juan YS (2015a) Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol 309:F318-F331

    Article  Google Scholar 

  • Liu WJ, Zhong ZJ, Cao LH, Li HT, Zhang TH, Lin WQ (2015b) Paclitaxel-induced lung injury and its amelioration by parecoxib sodium. Sci Rep 5:12977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Ding L, Lu Q, Chen YH (2013) Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 1:e24978

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas R, Verin AD, Black SM, Catravas JD (2009) Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol 77:1763–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer TN, Schwesinger C, Ye J, Denker BM, Nigam SK (2001) Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity. J Biol Chem 276:22048–22055

    Article  CAS  PubMed  Google Scholar 

  • Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798:2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:C1708–C1717

    CAS  PubMed  Google Scholar 

  • Morrow CM, Mruk D, Cheng CY, Hess RA (2010) Claudin and occludin expression and function in the seminiferous epithelium. Philos Transa R Soci Lond Ser B Biol Sci 365:1679–1696

    Article  CAS  Google Scholar 

  • Mortality GBD, Causes of Death C (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544

    Article  Google Scholar 

  • Müller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M (2014) Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. Crit Care 18:R73

    Article  PubMed  PubMed Central  Google Scholar 

  • Navone SE, Marfia G, Invernici G, Cristini S, Nava S, Balbi S, Sangiorgi S, Ciusani E, Bosutti A, Alessandri G, Slevin M, Parati EA (2013) Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat Protoc 8:1680–1693

    Article  CAS  PubMed  Google Scholar 

  • Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, Dexter DT (2015) Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis 74:392–405

    Article  PubMed  Google Scholar 

  • Pletz MW, von Baum H, van der Linden M, Rohde G, Schutte H, Suttorp N, Welte T (2012) The burden of pneumococcal pneumonia—experience of the German competence network CAPNETZ. Pneumologie (Stuttgart, Germany) 66:470–475

    Article  CAS  Google Scholar 

  • Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Birch NP, Suresh V (2016) An optimised human cell culture model for alveolar epithelial transport. PloS One 11:e0165225

    Article  PubMed  PubMed Central  Google Scholar 

  • Rode K, Sieme H, Richterich P, Brehm R (2015) Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions. Theriogenology 84:763–772

    Article  CAS  PubMed  Google Scholar 

  • Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA (2011) Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 179:1081–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soini Y, Takasawa A, Eskelinen M, Juvonen P, Karja V, Hasegawa T, Murata M, Tanaka S, Kojima T, Sawada N (2012) Expression of claudins 7 and 18 in pancreatic ductal adenocarcinoma: association with features of differentiation. J Clin Pathol 65:431–436

    Article  CAS  PubMed  Google Scholar 

  • Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR (1996) Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813

    Article  CAS  PubMed  Google Scholar 

  • Spieth PM, Bluth T, Gama De Abreu M, Bacelis A, Goetz AE, Kiefmann R (2014) Mechanotransduction in the lungs. Minerva Anestesiol 80:933–941

    CAS  PubMed  Google Scholar 

  • Stammler A, Luftner BU, Kliesch S, Weidner W, Bergmann M, Middendorff R, Konrad L (2016) Highly conserved testicular localization of claudin-11 in normal and impaired spermatogenesis. PloS One 11:e0160349

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymanski KV, Toennies M, Becher A, Fatykhova D, N’Guessan PD, Gutbier B, Klauschen F, Neuschaefer-Rube F, Schneider P, Rueckert J, Neudecker J, Bauer TT, Dalhoff K, Dromann D, Gruber AD, Kershaw O, Temmesfeld-Wollbrueck B, Suttorp N, Hippenstiel S, Hocke AC (2012) Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur Respir J 40:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Tang EI, Mok KW, Lee WM, Cheng CY (2015) EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 156:680–693

    Article  PubMed  Google Scholar 

  • Todd MC, Petty HM, King JM, Piana Marshall BN, Sheller RA, Cuevas ME (2015) Overexpression and delocalization of claudin-3 protein in MCF-7 and MDA-MB-415 breast cancer cell lines. Oncol Lett 10:156–162

    PubMed  PubMed Central  Google Scholar 

  • Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165

    Article  PubMed  Google Scholar 

  • Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063

    Article  CAS  PubMed  Google Scholar 

  • Weinheimer VK, Becher A, Tonnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Ruckert JC, Szymanski K, Temmesfeld-Wollbrueck B, Gruber AD, Bannert N, Suttorp N, Hippenstiel S, Wolff T, Hocke AC (2012) Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis 206:1685–1694

    Article  PubMed  Google Scholar 

  • Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 306:L217–L230

    Article  CAS  PubMed  Google Scholar 

  • Witzenrath M, Gutbier B, Hocke AC, Schmeck B, Hippenstiel S, Berger K, Mitchell TJ, de los Toyos JR, Rosseau S, Suttorp N, Schutte H (2006) Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia. Crit Care Med 34:1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA (2009) Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol 297:L219–L227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19

    Article  CAS  PubMed  Google Scholar 

  • You K, Xu X, Fu J, Xu S, Yue X, Yu Z, Xue X (2012) Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir Res 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuksel H, Yilmaz O, Karaman M, Firinci F, Turkeli A, Kanik ET, Inan S (2015) Vascular endothelial growth factor antagonism restores epithelial barrier dysfunction via affecting zonula occludens proteins. Exp Ther Med 10:362–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahlten J, Steinicke R, Bertrams W, Hocke AC, Scharf S, Schmeck B, Witzenrath M, Hammerschmidt S, Suttorp N, Hippenstiel S (2013) TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. Eur Respir J 41:384–391

    Article  CAS  PubMed  Google Scholar 

  • Zahlten J, Kim YJ, Doehn JM, Pribyl T, Hocke AC, Garcia P, Hammerschmidt S, Suttorp N, Hippenstiel S, Hubner RH (2014) Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211:1822–1830

    Article  PubMed  Google Scholar 

  • Zhou X, Dai Q, Huang X (2012) Neutrophils in acute lung injury. Front Biosci (Landmark ed) 17:2278–2283

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this work are included in the doctoral thesis of Andrea Peter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hippenstiel.

Ethics declarations

Support statement

This study was supported by the Transregional Collaborative Research Center SFB-TR84 of the Deutsche Forschungsgemeinschaft (Grants B6 to A.C. Hocke and S. Hippenstiel, Z1a to A.C. Hocke as well as Z1b to A.D. Gruber and B1 to N. Suttorp) and the German Federal Ministry of Education and Research (Grant C1 to S. Hippenstiel and C8 to A.C. Hocke; PROGRESS—Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis).

Conflict of interest

The authors have no financial conflict of interest.

Additional information

A. C. Hocke and S. Hippenstiel contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A., Fatykhova, D., Kershaw, O. et al. Localization and pneumococcal alteration of junction proteins in the human alveolar–capillary compartment. Histochem Cell Biol 147, 707–719 (2017). https://doi.org/10.1007/s00418-017-1551-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1551-y

Keywords

Navigation