Skip to main content
Log in

Giant molecules: where chemistry, physics, and bio-science meet

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This feature article focuses on the recent development of giant molecules, which has emerged at the interface among chemistry, physics, and bio-science. Their molecular designs are inspired by natural polymers like proteins and are modularly constructed from molecular nanoparticle building blocks via sequential “click” chemistry. Most important molecular parameters such as topology, composition, and molecular weight can be precisely controlled. Their hierarchical assembly reveals many features reminiscent of both small molecules and proteins yet unusual for conventional synthetic polymers. These features are summarized and compared along with synthetic polymers and proteins. Specifically, examples are given in each category of giant molecules to illustrate the characteristics of their hierarchical assembly across different length, time and energy scales. The idea of “artificial domain” is presented in analogy to the structural domains in proteins. By doing so, we aim to develop a rational and modular approach toward functional materials. The factors that dominate the materials functions are discussed with respect to the precision and dynamics of the assembly. The complexity of structure-function relationship is acknowledged, which suggests that there is still a long way to go toward the convergence of synthetic polymers and biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Muller AHE, Matyjaszewski K. Controlled and Living Polymerizations: Methods and Materials. Weinheim: Wiley-VCH, 2009

    Book  Google Scholar 

  2. Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP. Macromolecules, 2009, 42: 465–471

    Article  CAS  Google Scholar 

  3. National Research Council (U.S.). Committee on Biomolecular Materials and Processes Inspired by Biology: From Molecules to Materials to Machines. Washington, D.C.: National Academies Press, 2008

  4. Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, van Horn R, Cheng SZD. Macromolecules, 2014, 47: 1221–1239

    Article  CAS  Google Scholar 

  5. Zhang WB, Cheng SZD. Chin J Polym Sci, 2015, 33: 797–814

    Article  CAS  Google Scholar 

  6. Zhang WB, Wang XM, Wang XW, Liu D, Han SY, Cheng SZD. Prog Chem, 2015, 27: 1333–1342

    Google Scholar 

  7. Zhang WB, Chen EQ, Wang J, Zhang W, Wang LG, Cheng SZD. Acta Phys Sin, 2016, 65: 183601

    Google Scholar 

  8. Odian GG. Principles of Polymerization. Hoboken, NJ: Wiley-Interscience, 2004

    Book  Google Scholar 

  9. Whitford D. Proteins: Structure and Function. Hoboken, NJ: J. Wiley & Sons, 2005

    Google Scholar 

  10. Cesareni G. Modular Protein Domains. Weinheim: Wiley-VCH, 2005

    Google Scholar 

  11. Matyjaszewski K. Science, 2011, 333: 1104–1105

    Article  CAS  Google Scholar 

  12. Wang L, Xie J, Schultz PG. Annu Rev Biophys Biomol Struct, 2006, 35: 225–249

    Article  CAS  Google Scholar 

  13. Ngo JT, Tirrell DA. Acc Chem Res, 2011, 44: 677–685

    Article  CAS  Google Scholar 

  14. Kulkarni C, Kinzer-Ursem TL, Tirrell DA. ChemBioChem, 2013, 14: 1958–1962

    Article  CAS  Google Scholar 

  15. Varki A. Essentials of Glycobiology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2009

    Google Scholar 

  16. Johnson JA, Lu YY, van Deventer JA, Tirrell DA. Curr Opin Chem Biol, 2010, 14: 774–780

    Article  CAS  Google Scholar 

  17. Heal WP, Wright MH, Thinon E, Tate EW. Nat Protoc, 2011, 7: 105–117

    Article  CAS  Google Scholar 

  18. Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC. J Am Chem Soc, 2003, 125: 16162–16163

    Article  CAS  Google Scholar 

  19. Bird A. Nature, 2007, 447: 396–398

    Article  CAS  Google Scholar 

  20. Roundtree IA, He C. Curr Opin Chem Biol, 2016, 30: 46–51

    Article  CAS  Google Scholar 

  21. Mayer C, McInroy GR, Murat P, van Delft P, Balasubramanian S. Angew Chem Int Ed, 2016, 55: 11144–11148

    Article  CAS  Google Scholar 

  22. Blaxter M. Science, 2010, 330: 1758–1759

    Article  CAS  Google Scholar 

  23. Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz JF. Nat Commun, 2015, 6: 7237

    Article  CAS  Google Scholar 

  24. Mutlu H, Lutz JF. Angew Chem Int Ed, 2014, 53: 13010–13019

    Article  CAS  Google Scholar 

  25. Arnold FH. Acc Chem Res, 1998, 31: 125–131

    Article  CAS  Google Scholar 

  26. Yokobayashi Y, Weiss R, Arnold FH. Proc Natl Acad Sci USA, 2002, 99: 16587–16591

    Article  CAS  Google Scholar 

  27. Kastner MA. Phys Today, 1993, 46: 24–31

    Article  CAS  Google Scholar 

  28. Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931–2940

    Article  CAS  Google Scholar 

  29. Tomalia DA, Jensen A. Periodic patterns, relationships and categories of well-defined nanoscale building blocks. National Science Foundation Workshop Report, 2007

    Google Scholar 

  30. Roy X, Lee CH, Crowther AC, Schenck CL, Besara T, Lalancette RA, Siegrist T, Stephens PW, Brus LE, Kim P, Steigerwald ML, Nuckolls C. Science, 2013, 341: 157–160

    Article  CAS  Google Scholar 

  31. Nimmala PR, Knoppe S, Jupally VR, Delcamp JH, Aikens CM, Dass A. J Phys Chem B, 2014, 118: 14157–14167

    Article  CAS  Google Scholar 

  32. Chujo Y, Tanaka K. Bull Chem Soc Jpn, 2015, 88: 633–643

    Article  CAS  Google Scholar 

  33. Yu X, Zhong S, Li X, Tu Y, Yang S, van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD. J Am Chem Soc, 2010, 132: 16741–16744

    Article  CAS  Google Scholar 

  34. Yu X, Li Y, Dong XH, Yue K, Lin Z, Feng X, Huang M, Zhang WB, Cheng SZD. J Polym Sci Part B-Polym Phys, 2014, 52: 1309–1325

    Article  CAS  Google Scholar 

  35. Yue K, Liu C, Guo K, Wu K, Dong XH, Liu H, Huang M, Wesdemiotis C, Cheng SZD, Zhang WB. Polym Chem, 2013, 4: 1056–1067

    Article  CAS  Google Scholar 

  36. Velonia K, Rowan AE, Nolte RJM. J Am Chem Soc, 2002, 124: 4224–4225

    Article  CAS  Google Scholar 

  37. Lawrence J, Lee SH, Abdilla A, Nothling MD, Ren JM, Knight AS, Fleischmann C, Li Y, Abrams AS, Schmidt BVKJ, Hawker MC, Connal LA, McGrath AJ, Clark PG, Gutekunst WR, Hawker CJ. J Am Chem Soc, 2016, 138: 6306–6310

    Article  CAS  Google Scholar 

  38. Glotzer SC, Solomon MJ. Nat Mater, 2007, 6: 557–562

    Article  Google Scholar 

  39. Damasceno PF, Engel M, Glotzer SC. Science, 2012, 337: 453–457

    Article  CAS  Google Scholar 

  40. Date RW, Bruce DW. J Am Chem Soc, 2003, 125: 9012–9013

    Article  CAS  Google Scholar 

  41. Sun HJ, Tu Y, Wang CL, van Horn RM, Tsai CC, Graham MJ, Sun B, Lotz B, Zhang WB, Cheng SZD. J Mater Chem, 2011, 21: 14240–14247

    Article  CAS  Google Scholar 

  42. Teng FA, Cao Y, Qi YJ, Huang M, Han ZW, Cheng SZD, Zhang WB, Li H. Chem Asian J, 2013, 8: 1223–1231

    Article  CAS  Google Scholar 

  43. Wang CL, Zhang WB, van Horn RM, Tu Y, Gong X, Cheng SZD, Sun Y, Tong M, Seo J, Hsu BBY, Heeger AJ. Adv Mater, 2011, 23: 2951–2956

    Article  CAS  Google Scholar 

  44. Wang CL, Zhang WB, Hsu CH, Sun HJ, van Horn RM, Tu Y, Anokhin DV, Ivanov DA, Cheng SZD. Soft Matter, 2011, 7: 6135–6143

    Article  CAS  Google Scholar 

  45. Wang CL, Zhang WB, Sun HJ, van Horn RM, Kulkarni RR, Tsai CC, Hsu CS, Lotz B, Gong X, Cheng SZD. Adv Energy Mater, 2012, 2: 1375–1382

    Article  CAS  Google Scholar 

  46. Baffreau J, Ordronneau L, Leroy-Lhez S, Hudhomme P. J Org Chem, 2008, 73: 6142–6147

    Article  CAS  Google Scholar 

  47. Liang WW, Huang CF, Wu KY, Wu SL, Chang ST, Cheng YJ, Wang CL. Chem Sci, 2016, 7: 2768–2774

    Article  CAS  Google Scholar 

  48. Zhang MY, Gu KH, Zhou Y, Zhou S, Fan XH, Shen Z. Chem Commun, 2016, 52: 3923–3926

    Article  CAS  Google Scholar 

  49. Ren X, Sun B, Tsai CC, Tu Y, Leng S, Li K, Kang Z, Horn RMV, Li X, Zhu M, Wesdemiotis C, Zhang WB, Cheng SZD. J Phys Chem B, 2010, 114: 4802–4810

    Article  CAS  Google Scholar 

  50. Dahl JE, Liu SG, Carlson RMK. Science, 2003, 299: 96–99

    Article  CAS  Google Scholar 

  51. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS. ACS Nano, 2009, 3: 244–255

    Article  CAS  Google Scholar 

  52. Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZD. Science, 2015, 348: 424–428

    Article  CAS  Google Scholar 

  53. De Graef M, Mchenry ME. Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry. 2nd Ed. Cambridge: Cambridge University Press, 2012

    Book  Google Scholar 

  54. Frank FC, Kasper JS. Acta Cryst, 1958, 11: 184–190

    Article  CAS  Google Scholar 

  55. Frank FC, Kasper JS. Acta Cryst, 1959, 12: 483–499

    Article  CAS  Google Scholar 

  56. Lee S, Bluemle MJ, Bates FS. Science, 2010, 330: 349–353

    Article  CAS  Google Scholar 

  57. Ungar G, Zeng X. Soft Matter, 2005, 1: 95

    Article  CAS  Google Scholar 

  58. Lee S, Leighton C, Bates FS. Proc Natl Acad Sci USA, 2014, 111: 17723–17731

    Article  CAS  Google Scholar 

  59. Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng SZD, Zhang WB. Macromolecules, 2012, 45: 8126–8134

    Article  CAS  Google Scholar 

  60. Zhang WB, Li Y, Li X, Dong X, Yu X, Wang CL, Wesdemiotis C, Quirk RP, Cheng SZD. Macromolecules, 2011, 44: 2589–2596

    Article  CAS  Google Scholar 

  61. Hirsch A, Brettreich M. Fullerenes: Chemistry and Reactions. Weinheim, Great Britain: Wiley-VCH, 2005

    Google Scholar 

  62. Han SY, Wang XM, Shao Y, Guo QY, Li Y, Zhang WB. Chem Eur J, 2016, 22: 6397–6403

    Article  CAS  Google Scholar 

  63. Wang XM, Guo QY, Han SY, Wang JY, Han D, Fu Q, Zhang WB. Chem Eur J, 2015, 21: 15246–15255

    Article  CAS  Google Scholar 

  64. Oguri N, Egawa Y, Takeda N, Unno M. Angew Chem Int Ed, 2016, 55: 9336–9339

    Article  CAS  Google Scholar 

  65. Blázquez-Moraleja A, Eugenia Pérez-Ojeda M, Suárez JR, Luisa Jimeno M, Chiara JL. Chem Commun, 2016, 52: 5792–5795

    Article  CAS  Google Scholar 

  66. Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, van Camp W. Angew Chem Int Ed, 2011, 50: 60–62

    Article  CAS  Google Scholar 

  67. Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed, 2001, 40: 2004–2021

    Article  CAS  Google Scholar 

  68. Su H, Zheng J, Wang Z, Lin F, Feng X, Dong XH, Becker ML, Cheng SZD, Zhang WB, Li Y. ACS Macro Lett, 2013, 2: 645–650

    Article  CAS  Google Scholar 

  69. Li Y, Wang Z, Zheng J, Su H, Lin F, Guo K, Feng X, Wesdemiotis C, Becker ML, Cheng SZD, Zhang WB. ACS Macro Lett, 2013, 2: 1026–1032

    Article  CAS  Google Scholar 

  70. Iwai H, Lingel A, Pluckthun A. J Biol Chem, 2001, 276: 16548–16554

    Article  CAS  Google Scholar 

  71. Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. J Am Chem Soc, 2016, 138: 2162–2165

    Article  CAS  Google Scholar 

  72. Antos JM, Popp MWL, Ernst R, Chew GL, Spooner E, Ploegh HL. J Biol Chem, 2009, 284: 16028–16036

    Article  CAS  Google Scholar 

  73. Wu Z, Guo X, Guo Z. Chem Commun, 2011, 47: 9218–9220

    Article  CAS  Google Scholar 

  74. Parthasarathy R, Subramanian S, Boder ET. Bioconjug Chem, 2007, 18: 469–476

    Article  CAS  Google Scholar 

  75. Zakeri B, Howarth M. J Am Chem Soc, 2010, 132: 4526–4527

    Article  CAS  Google Scholar 

  76. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M. Proc Natl Acad Sci USA, 2012, 109: e690–E697

    Article  Google Scholar 

  77. Veggiani G, Nakamura T, Brenner MD, Gayet RV, Yan J, Robinson CV, Howarth M. Proc Natl Acad Sci USA, 2016, 113: 1202–1207

    Article  CAS  Google Scholar 

  78. Wang XW, Zhang WB. Angew Chem Int Ed, 2016, 55: 3442–3446

    Article  CAS  Google Scholar 

  79. Zhang WB, Sun F, Tirrell DA, Arnold FH. J Am Chem Soc, 2013, 135: 13988–13997

    Article  CAS  Google Scholar 

  80. Fierer JO, Veggiani G, Howarth M. Proc Natl Acad Sci USA, 2014, 111: e1176–E1181

    Article  CAS  Google Scholar 

  81. Feynman RP. Eng Sci, 1960, 23: 22–36

    Google Scholar 

  82. Yu X, Yue K, Hsieh IF, Li Y, Dong XH, Liu C, Xin Y, Wang HF, Shi AC, Newkome GR, Ho RM, Chen EQ, Zhang WB, Cheng SZD. Proc Natl Acad Sci USA, 2013, 110: 10078–10083

    Article  CAS  Google Scholar 

  83. Ni B, Huang M, Chen Z, Chen Y, Hsu CH, Li Y, Pochan D, Zhang WB, Cheng SZD, Dong XH. J Am Chem Soc, 2015, 137: 1392–1395

    Article  CAS  Google Scholar 

  84. Zhang W, Huang M, Su H, Zhang S, Yue K, Dong XH, Li X, Liu H, Zhang S, Wesdemiotis C, Lotz B, Zhang WB, Li Y, Cheng SZD. ACS Cent Sci, 2016, 2: 48–54

    Article  CAS  Google Scholar 

  85. Dong XH, Ni B, Huang M, Hsu CH, Bai R, Zhang WB, Shi AC, Cheng SZD. Angew Chem Int Ed, 2016, 55: 2459–2463

    Article  CAS  Google Scholar 

  86. Hsu CH, Dong XH, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi AC, Thomas EL, Cheng SZD. ACS Nano, 2016, 10: 919–929

    Article  CAS  Google Scholar 

  87. Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD. J Am Chem Soc, 2011, 133: 10712–10715

    Article  CAS  Google Scholar 

  88. Lin MC, Hsu CH, Sun HJ, Wang CL, Zhang WB, Li Y, Chen HL, Cheng SZD. Polymer, 2014, 55: 4514–4520

    Article  CAS  Google Scholar 

  89. Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang WB, Yue K, Cheng SZD. J Am Chem Soc, 2014, 136: 10691–10699

    Article  CAS  Google Scholar 

  90. Liu H, Luo J, Shan W, Guo D, Wang J, Hsu CH, Huang M, Zhang W, Lotz B, Zhang WB, Liu T, Yue K, Cheng SZD. ACS Nano, 2016, 10: 6585–6596

    Article  CAS  Google Scholar 

  91. Auyeung E, Li TING, Senesi AJ, Schmucker AL, Pals BC, de la Cruz MO, Mirkin CA. Nature, 2013, 505: 73–77

    Article  CAS  Google Scholar 

  92. Xiong H, Sfeir MY, Gang O. Nano Lett, 2010, 10: 4456–4462

    Article  CAS  Google Scholar 

  93. Lu F, Yager KG, Zhang Y, Xin H, Gang O. Nat Commun, 2015, 6: 6912

    Article  CAS  Google Scholar 

  94. Williams GA, Ishige R, Cromwell OR, Chung J, Takahara A, Guan Z. Adv Mater, 2015, 27: 3934–3941

    Article  CAS  Google Scholar 

  95. Lin Z, Lu P, Hsu CH, Sun J, Zhou Y, Huang M, Yue K, Ni B, Dong XH, Li X, Zhang WB, Yu X, Cheng SZD. Macromolecules, 2015, 48: 5496–5503

    Article  CAS  Google Scholar 

  96. Dong XH, Lu X, Ni B, Chen Z, Yue K, Li Y, Rong L, Koga T, Hsiao BS, Newkome GR, Shi AC, Zhang WB, Cheng SZD. Soft Matter, 2014, 10: 3200–3208

    Article  CAS  Google Scholar 

  97. Wu K, Huang M, Yue K, Liu C, Lin Z, Liu H, Zhang W, Hsu CH, Shi AC, Zhang WB, Cheng SZD. Macromolecules, 2014, 47: 4622–4633

    Article  CAS  Google Scholar 

  98. Lam CN, Kim M, Thomas CS, Chang D, Sanoja GE, Okwara CU, Olsen BD. Biomacromolecules, 2014, 15: 1248–1258

    Article  CAS  Google Scholar 

  99. Qin G, Perez PM, Mills CE, Olsen BD. Biomacromolecules, 2016, 17: 928–934

    Article  CAS  Google Scholar 

  100. Zhou H, Li J, Chua MH, Yan H, Ye Q, Song J, Lin TT, Tang BZ, Xu J. Chem Commun, 2016, 52: 12478–12481

    Article  CAS  Google Scholar 

  101. Lin Z, Lu P, Hsu CH, Yue K, Dong XH, Liu H, Guo K, Wesdemiotis C, Zhang WB, Yu X, Cheng SZD. Chem Eur J, 2014, 20: 11630–11635

    Article  CAS  Google Scholar 

  102. Dong XH, Hsu CH, Li Y, Liu H, Wang J, Huang M, Yue K, Sun HJ, Wang CL, Yu X, Zhang WB, Lotz B, Cheng SZD. Adv Polym Sci, 2016, doi: 10.1007/1012_2015_1343

    Google Scholar 

  103. Habchi J, Tompa P, Longhi S, Uversky VN. Chem Rev, 2014, 114: 6561–6588

    Article  CAS  Google Scholar 

  104. Tompa P. Trends Biochem Sci, 2002, 27: 527–533

    Article  CAS  Google Scholar 

  105. Wang Y, Lin HX, Chen L, Ding SY, Lei ZC, Liu DY, Cao XY, Liang HJ, Jiang YB, Tian ZQ. Chem Soc Rev, 2014, 43: 399–411

    Article  CAS  Google Scholar 

  106. Wang Y, Lin HX, Ding SY, Liu DY, Chen L, Lei ZC, Fan FR, Tian ZQ. Sci Sin Chim, 2012, 42: 525

    Article  CAS  Google Scholar 

  107. Texter J, Tirrell M. AIChE J, 2001, 47: 1706–1710

    Article  CAS  Google Scholar 

  108. Tirrell M. AIChE J, 2005, 51: 2386–2390

    Article  CAS  Google Scholar 

  109. Goldberg AD, Allis CD, Bernstein E. Cell, 2007, 128: 635–638

    Article  CAS  Google Scholar 

  110. Chen W, Jin J, Gu W, Wei B, Lei Y, Xiong S, Zhang G. J Biotech, 2014, 189: 104–113

    Article  CAS  Google Scholar 

  111. Materials Genome Initiative for Global Competitiveness. Washington, D. C.: National Science and Technology Council, 2011 (https://www.whitehouse.gov/mgi)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21674003, 21474003, 91427304), the National High Technology Research and Development Program of China (2015AA020941), and the National Science Foundation of US (DMR-0906898, DMR-1409972).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Bin Zhang or Stephen Z.D. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, GZ., Zhang, WB. & Cheng, S.Z. Giant molecules: where chemistry, physics, and bio-science meet. Sci. China Chem. 60, 338–352 (2017). https://doi.org/10.1007/s11426-016-0436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0436-x

Keywords

Navigation