Skip to main content

Advertisement

Log in

Electrosynthesis of highly porous NiO nanostructure through pulse cathodic electrochemical deposition: heat-treatment (PCED-HT) method with excellent supercapacitive performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A highly porous NiO nanostructure is prepared through a pulse cathodic electrochemical deposition/heat-treatment (PCED-HT) method. Based on the method first a hydroxide precursor was deposited from an additive-free 0.005 M Ni(NO3)2 through a pulse–base-electro-generation procedure. The pulsed deposition experiments were performed at ton = 1 s, toff = 1 s, ipeak = 50 mA cm−2, T = 80 °C and 30 min. The green hydroxide powder was then calcined at 500 °C for 3 h and to obtain a black oxide powder. The mechanisms for the deposition of the nickel hydroxide precursor during the PCED step, as well as that of the formation of the final oxide product during the HT step were studied. The structural and morphological properties of the product were evaluated through XRD, IR and SEM. The results revealed the precursor and the product to be porous β-nickel hydroxide and porous cubic crystalline nickel oxide nanostructures, respectively. The super-capacitive performance NiO-based electrode was evaluated by cyclic voltammetry and the galvanostatic charge–discharge techniques in 1 M KOH electrolyte. It was observed that the fabricated porous NiO electrode exhibits capacitive behavior of low ΔEp value of 32 mV and width potential window (ΔV = 0.8 V), and is capable to deliver high specific capacitance of 1056.4 F g−1 and capacity retention of 89.7% after 3000 GCD cycles at current load of 3 A g−1, and energy density and power density as high as 82.3 Wh/Kg and 0.60 W/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925 (2016)

    Article  Google Scholar 

  2. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Nature Commun. 5, 3317 (2014)

    Google Scholar 

  3. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)

    Article  Google Scholar 

  4. J. Tizfahm, M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Mater. Lett. 167, 153 (2016)

    Article  Google Scholar 

  5. D. Gui, W. Chen, C. Liu, J. Liu, J. Mater. Sci.- Mater. Electron. 27, 5121 (2016)

    Article  Google Scholar 

  6. M. Aghazadeh, M. Asadi, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Appl. Surf. Sci. 364, 726 (2016)

    Article  Google Scholar 

  7. M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, D. Gharailou, F. Faridbod, J. Mater. Sci.- Mater. Electron. 27, 7707 (2016)

    Article  Google Scholar 

  8. P.T.M. Bui, J.H. Song, Z.Y. Li, M.S. Akhtar, O.B. Yang, J. Alloys Compd. 694, 560 (2017)

    Article  Google Scholar 

  9. M. Aghazadeh, A. Bahrami-Samani, D. Gharailou, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, J. Mater. Sci.- Mater. Electron. 27, 11192 (2016)

    Article  Google Scholar 

  10. M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem 18, 1569 (2014)

    Article  Google Scholar 

  11. L. Tang, F. Duan, M. Chen, J. Mater. Sci.- Mater. Electron. (2016) (in press)

  12. R.S. Ingole, S.B. Kondawar, B.J. Lokhande, J. Mater. Sci.- Mater. Electron. (2016) (in press)

  13. J.T. Mehrabad, M. Aghazadeh, M.G. Maragheh, M.R. Ganjali, Mater. Lett. 184, 223 (2016)

    Article  Google Scholar 

  14. M. Aghazadeh, S. Dalvand, M. Hosseinifard, Ceram. Int. 40, 3485 (2014)

    Article  Google Scholar 

  15. H. Luo, F. Zhang, X. Zhao, D. Zhang, Y. Sun, P. Yang, J. Mater. Sci.- Mater. Electron. 24, 2473 (2013)

    Article  Google Scholar 

  16. A. García-Gómez, S. Eugénio, R.G. Duarte, T.M. Silva, M.J. Carmezim, M.F. Montemor, Appl. Surf. Sci. 382, 34 (2016)

    Article  Google Scholar 

  17. H. Che, A. Liu, J. Mater. Sci.- Mater. Electron. 26, 4097 (2015)

    Article  Google Scholar 

  18. M. Rahimi-Nasrabadi, H.R. Naderi, M. Sadeghpour Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci.- Mater. Electron. (2016) (in press)

  19. M. Aghazadeh, R. Ahmadi, D. Gharailou, M.R. Ganjali, P. Norouzi, J. Mater. Sci.- Mater. Electron. 27, 8623 (2016)

    Article  Google Scholar 

  20. J. Wang, Y. Zhang, P. Wan, T. Li, D. Hou, S. Hussain, H. Shao, J. Mater. Sci.- Mater. Electron. 27, 8020 (2016)

    Article  Google Scholar 

  21. A. Barani, M. Aghazadeh, M.R. Ganjali, B. Sabour, A.A. Malek Barmi, S. Dalvand, Mater. Sci. Semicond. Process. 23, 85 (2014)

    Article  Google Scholar 

  22. Y. Wang, Q. Su, J. Mater. Sci.- Mater. Electron. 27, 4752 (2016)

    Article  Google Scholar 

  23. H. Mohammad Shiri, M. Aghazadeh, J. Electrochem. Soc. 159, E132 (2012)

    Article  Google Scholar 

  24. M. Aghazadeh, J. Mater. Sci.- Mater. Electron. (2016) (in press)

  25. J. Zhang, X. Yi, X.C. Wang, J. Ma, S. Liu, X.-J. Wang, J. Mater. Sci.- Mater. Electron. 26, 7901 (2015)

    Article  Google Scholar 

  26. Y. Jiang, X. Leng, Z. Jia, H. Chen, H. Suo, C. Zhao, J. Mater. Sci.- Mater. Electron. 26, 2995 (2015)

    Article  Google Scholar 

  27. S. Wu, K.S. Hui, K.N. Hui, K.H. Kim, J. Mater. Chem. A 4, 9113 (2016)

    Article  Google Scholar 

  28. B. Li, M. Zheng, H. Xue, H. Pang, Inorg. Chem. Front 3, 175 (2016)

    Article  Google Scholar 

  29. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702 (2015)

    Article  Google Scholar 

  30. M. Aghazadeh, M. Ghaemi, A.N. Golikand, A. Ahmadi, Mater. Lett. 65, 2545 (2011)

    Article  Google Scholar 

  31. A.A. Malek Barmi, M. Aghazadeh, B. Arhami, H.M. Shiri, A.A. Fazl, E. Jangju, Chem. Phys. Lett. 541, 65 (2012)

    Article  Google Scholar 

  32. T. Nguyen, M. Boudard, M. João Carmezim, M. Fátima Montemor, Electrochim. Acta 202, 166 (2016)

    Article  Google Scholar 

  33. M. Aghazadeh, B. Sabour, M.R. Ganjali, S. Dalvand, Appl. Surf. Sci. 313, 581 (2014)

    Article  Google Scholar 

  34. M. Aghazadeh, M. Hosseinifard, Ceram. Int. 39, 4427 (2013)

    Article  Google Scholar 

  35. B.J. Plowman, L.A. Jones, S.K. Bhargava, Chem. Commun. 51, 4331 (2015)

    Article  Google Scholar 

  36. M. Aghazadeh, M. Hosseinifard, B. Sabour, S. Dalvand, App. Surf. Sci. 287, 187 (2013)

    Article  Google Scholar 

  37. F. Khosrow-pour, M. Aghazadeh, B. Arhami, J. Electrochem. Soc. 160, D150 (2013)

    Article  Google Scholar 

  38. S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces 5, 1596 (2013)

    Article  Google Scholar 

  39. S. Kumar Meher, P. Justin, G.R. Rao, Nanoscale 3, 683 (2011)

    Article  Google Scholar 

  40. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, J. Sol-Gel. Sci. Technol. 74, 621 (2015)

    Article  Google Scholar 

  41. R. Poonguzhali, N. Shanmugam, R. Gobi, A. Senthilkumar, G. Viruthagiri, N. Kannadasan, J. Power Sources 293, 790 (2015)

    Article  Google Scholar 

  42. H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, Y. Luo, Nanoscale Res. Lett. 9, 424 (2014)

    Article  Google Scholar 

  43. H.Y. Wu, H.W. Wang, Int. J. Electrochem. Sci. 7, 4405 (2012)

    Google Scholar 

  44. G. Huang, S. Xu, Y. Cheng, W. Zhang, J. Li, X. Kang, Int. J. Electrochem. Sci. 10, 2594 (2015)

    Google Scholar 

  45. J. Zhao, H. Liu, Q. Zhang, Appl. Surf. Sci. 392, 1097 (2017)

    Article  Google Scholar 

  46. C. Yuan, L. Hou, Y. Feng, S. Xiong, X. Zhang, Electrochim. Acta 88, 507 (2013)

    Article  Google Scholar 

  47. A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, C.D. Lokhande, J. Electroanal. Chem. 704, 90 (2013)

    Article  Google Scholar 

  48. M. Kundu, L. Liu, Mater. Lett. 144, 114 (2015)

    Article  Google Scholar 

  49. M. Yao, Z. Hu, Y. Liu, P. Liu, Z. Ai, O. Rudolf, J. Alloys Compd. 648, 414 (2015)

    Article  Google Scholar 

  50. L. An, K. Xu, W. Li, Q. Liu, B. Li, R. Zou, Z. Chen, J. Hu, J. Mater. Chem. A 2, 12799 (2014)

    Article  Google Scholar 

  51. H. Pang, Y. Shi, J. Du, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, B. Yuan, Electrochim. Acta 85, 256 (2012)

    Article  Google Scholar 

  52. M. Fan, B. Ren, L. Yu, Q. Liu, J. Wang, D. Song, J. Liu, X. Jing, L. Liu, CrystEngComm 16, 10389 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Ganjali, M.R. Electrosynthesis of highly porous NiO nanostructure through pulse cathodic electrochemical deposition: heat-treatment (PCED-HT) method with excellent supercapacitive performance. J Mater Sci: Mater Electron 28, 8144–8154 (2017). https://doi.org/10.1007/s10854-017-6521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6521-6

Keywords

Navigation