Skip to main content
Log in

Metabolic map of mature maize kernels

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolites in maize kernels are associated not only with nutritional value but also physiological properties such as maturation, desiccation, and germination. However, comprehensive information concerning the metabolome of maize kernels is limited. In this study, we identified 210 metabolites in mature kernels of 14 representative maize lines using a non-targeted metabolomic profiling approach. Further statistical analysis revealed that 75 metabolites were significantly variable among those tested lines, and certain metabolites out of the detected 210 metabolites played critical roles in distinguishing one line from another. Additionally, metabolite–metabolite correlation analysis dissected key regulatory elements or pathways involved in metabolism of lipids, amino acids and carbohydrates. Furthermore, an integrated metabolic map constructed with transcriptomic, proteomic and metabolic data uncovered characteristic regulatory mechanisms of maize kernel metabolism. Altogether, this work provides new insights into the maize kernel metabolome that would be useful for metabolic engineering and/or molecular breeding to improve maize kernel quality and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali, Q., Ashraf, M., Anwar, F., & Al-Qurainy, F. (2012). Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. Journal of the American Oil Chemists Society, 89, 1485–1493.

    CAS  Google Scholar 

  • Angelovici, R., Galili, G., Fernie, A. R., et al. (2010). Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 15(4), 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

    Article  Google Scholar 

  • Cañas, R. A., Amiour, N., Quilleré, I., et al. (2011). An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). Journal of Experimental Botany, 62, 2309–2318.

    Article  PubMed  Google Scholar 

  • Chang, Y., Zhao, C., Zhu, Z., et al. (2012). Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Molecular Biology, 78, 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., & Burris, J. S. (1990). Role of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Crop Science, 30, 971–975.

    Article  CAS  Google Scholar 

  • Chen, R., Xue, G., Chen, P., et al. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17, 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Dierking, E. C., & Bilyeu, K. D. (2009). Raffinose and stachyose metabolism are not required for efficient soybean seed germination. Journal of Plant Physiology, 166, 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. M., DeHaven, C. D., Barrett, T., et al. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81(16), 6656–6667.

    Article  CAS  PubMed  Google Scholar 

  • Fait, A., Angelovici, R., Less, H., et al. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiology, 142(3), 839–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Bañares, F., Esteve, M., & Viver, J. M. (2009). Fructose-sorbitol malabsorption. Current Gastroenterology Reports, 11(5), 368–374.

    Article  PubMed  Google Scholar 

  • Fernie, A. R., & Schauer, N. (2009). Metabolomics-assisted breeding: A viable option for crop improvement? Trends in Genetics, 25, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Frank, T., Röhlig, R. M., Davies, H. V., Barros, E., & Engel, K. H. (2012). Metabolite profiling of maize kernels–genetic modification versus environmental influence. Journal of Agriculture and Food Chemistry, 60, 3005–3012.

    Article  CAS  Google Scholar 

  • Fu, Z., Jin, X., Ding, D., Li, Y., Fu, Z., & Tang, J. (2011). Proteomic analysis of heterosis during maize seed germination. Proteomics, 118, 1462–1472.

    Article  Google Scholar 

  • Fu, J., Thiemann, A., Schrag, T., Melchinger, A., Scholten, S., & Frisch, M. (2010). Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome. BMC Plant Biology, 10, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Handley, L. W., Pharr, D. M., & McFeeters, R. F. (1983). Carbohydrate changes during maturation of cucumber fruit: Implications for sugar metabolism and transport. Plant Physiology, 72, 498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrigan, G. G., Stork, L. G., Riordan, S. G., et al. (2007). Impact of genetics and environment on nutritional and metabolite components of maize grain. Journal of Agriculture and Food Chemistry, 55, 6177–6185.

    Article  CAS  Google Scholar 

  • Islam, M. S., & Sakaguchi, E. (2006). Sorbitol-based osmotic diarrhea: Possible causes and mechanism of prevention investigated in rats. World Journal of Gastroenterology, 12, 7635–7641.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson, E. L., Lange, R. A., & Jacobson, M. K. (1979). Pyridine nucleotide synthesis in 3T3 cells. Journal of Cellular Physiology, 99, 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, Y., Zhao, H., Ren, L., et al. (2012). Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 44, 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Kametani, T., & Furuyama, H. (1987). Synthesis of vitamin D3 and related compounds. Medicinal Research Reviews, 7, 147–171.

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes, J. J., Fu, J., De Vos, C. R., et al. (2006). The genetics of plant metabolism. Nature Genetics, 38, 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Kusano, M., Fukushima, A., Redestig, H., & Saito, K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 62(4), 1439–1453.

    Article  CAS  PubMed  Google Scholar 

  • Lai, J., Li, R., Xu, X., et al. (2010). Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 42, 1027–1030.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, K. A., Berger, A., Mitchell, M., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9(4), 383–397.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Peng, Z., Yang, X., et al. (2012a). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.

    Article  PubMed  Google Scholar 

  • Li, Q., Yang, X., Xu, S., et al. (2012b). Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS ONE, 7, e36807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec, J., Römisch-Margl, L., Nikoloski, Z., et al. (2011). Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. Plant Journal, 68, 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165, 2117–2128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Majdi, M., Cankar, K., et al. (2011). Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotianabenthamiana. PLoS ONE, 6, e23255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99, 6080–6084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussaieff, A., Rogachev, I., Brodsky, L., et al. (2013). High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences of the United States of America, 110, E1232–E1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara, E., & Nonogaki, H. (2012). Seed biology in the 21st century: Perspectives and new directions. Plant and Cell Physiology, 53, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Nowacki, J., & Bandurski, R. S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiology, 65, 422–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37(4), 521–535.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, M. J., Guo, L., Alexander, D. C., Ryals, J. A., Wone, B. W., & Cushman, J. C. (2011). A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell, 23, 1231–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy, V., Gerbasi, P. F., Young, K. A., et al. (2000). Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology, 124, 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy, V., Young, K. A., Dorsch, J. A., & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 158, 489–497.

    Article  CAS  Google Scholar 

  • Rao, J., Yang, L., Wang, C., Zhang, D., & Shi, J. (2013). Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 4(2), 1–11.

    Article  CAS  Google Scholar 

  • Redzynia, I., Ziółkowska, N. E., Majzner, W. R., et al. (2009). Structural investigation of biologically active phenolic compounds isolated from European tree species. Molecules, 14, 4147–4158.

    Article  CAS  PubMed  Google Scholar 

  • Reumann, S., Quan, S., Aung, K., et al. (2009). In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiology, 150, 125–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., et al. (2012a). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44, 217–220.

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., et al. (2012b). Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the United States of America, 109, 8872–8877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, M., Davison, T. S., Henz, S. R., et al. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37, 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, K. M., & Ohlrogge, J. B. (2002). Lipid metabolism in plants. New Comprehensive Biochemistry, 36, 93–126.

    Article  CAS  Google Scholar 

  • Serna-Saldivar, S. O., Gomez, M. H., & Rooney, L. W. (1994). Food uses of regular and specialty corns and their dry-milled fractions. In A. R. Hallauer (Ed.), Specialty corns (pp. 263–298). Boca Raton: CRC Press.

    Google Scholar 

  • Skogerson, K., Harrigan, G. G., Reynolds, T. L., et al. (2010). Impact of genetics and environment on the metabolite composition of maize grain. Journal of Agriculture and Food Chemistry, 58, 3600–3610.

    Article  CAS  Google Scholar 

  • Takaha, T., & Smith, S. M. (1999). The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnology and Genetic Engineering Reviews, 16, 257–280.

    Article  CAS  PubMed  Google Scholar 

  • Toubiana, D., Semel, Y., Tohge, T., et al. (2012). Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genetics, 8, e1002612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda, M., & Bandurski, R. S. (1969). A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiology, 44, 1175–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the alpha-amylase family. Journal of Biotechnology, 94, 137–155.

    Article  PubMed  Google Scholar 

  • Voelker, T., & Kinney, A. J. (2001). Variations in the biosynthesis of seed-storage lipids. Annual Review of Plant Biology, 52, 335–361.

    Article  CAS  Google Scholar 

  • Wang, G., Wang, G., Wang, F., & Song, R. (2012). A transcriptional roadmap for seed development in maize. In G. K. Agrawal & R. Rakwal (Eds.), Seed development: Omics technologies toward improvement of seed quality and crop yield (pp. 81––97). Netherlands: Springer.

    Google Scholar 

  • Weber, H., Heim, U., Golombek, S., Borisjuk, L., & Wobus, U. (1998). Assimilate uptake and the regulation of seed development. Seed Science Research, 8, 331–345.

    Article  CAS  Google Scholar 

  • Weckwerth, W., & Fiehn, O. (2002). Can we discover novel pathways using metabolomic analysis? Current Opinion in Biotechnology, 13, 156–160.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. Z., De la Rosa Santamaria, R., Virdi, K. S., et al. (2012). The chloroplast triggers developmental reprogramming when MUTS HOMOLOG1 is suppressed in plants. Plant Physiology, 159, 710–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X. S., Staub, J. M., Pandravada, A., et al. (2013). Omics technologies reveal abundant natural variation in metabolites and transcripts among conventional maize hybrids. Food Nutrients, 4, 335–341.

    Article  Google Scholar 

  • Zachariou, M., & Scopes, R. K. (1986). Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. Journal of Bacteriology, 167, 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Z. L. (2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling and Behaviour, 4, 584–591.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Qian Luo, Mrs. Jin Zhou, and Dr. Guorun Qu for their assistance in the metabolomic analysis. This work was supported by the China National Transgenic Plant Special Fund (2011ZX08012-002 and 2013ZX08012-002), China Innovative Research Team, Ministry of Education, and 111 Project (B14016).

Disclosures

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 285 kb)

Supplementary material 2 (XLSX 1346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Cheng, F., Hu, C. et al. Metabolic map of mature maize kernels. Metabolomics 10, 775–787 (2014). https://doi.org/10.1007/s11306-014-0624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0624-3

Keywords

Navigation