Skip to main content

Advertisement

Log in

Luciferase does not alter metabolism in cancer cells

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Luciferase transfected cell lines are used extensively for cancer models, revealing valuable biological information about disease mechanisms. However, these genetically encoded reporters, while useful for monitoring tumor response in cancer models, can impact cell metabolism. Indeed firefly luciferase and fatty acyl-CoA synthetases differ by a single amino acid, raising the possibility that luciferase activity might alter metabolism and introduce experimental artifacts. Therefore knowledge of the metabolic response to luciferase transfection is of significant importance, especially given the thousands of research studies using luciferase as an in vivo bioluminescence imaging reporter. Untargeted metabolomics experiments were performed to examine three different types of lymphoblastic leukemia cell lines (Ramos, Raji and SUP-T1) commonly used in cancer research, each were analyzed with and without vector transduction. The Raji model was also tested under perturbed starvation conditions to examine potential luciferase-mediated stress responses. The results showed that no significant metabolic differences were observed between parental and luciferase transduced cells for each cell line, and that luciferase overexpression does not alter cell metabolism under basal or perturbed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

BLI:

Bioluminescence imaging

dPBS:

Dulbecco’s phosphate buffered saline

ESI:

Electrospray ionization

EV:

Empty vector

FA:

Formic acid

FACS:

Fatty Acyl CoA synthetase

FLuc:

Photinus pyralis luciferase

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High performance liquid chromatography

IPA:

Isopropanol

LC/MS:

Liquid Chromatography/Mass Spectrometry

MeOH:

Methanol

MS:

Mass Spectrometry

NH4Ac:

Ammonium acetate

NH4OH:

Ammonium hydroxide

Q-TOF/MS:

Quadrupole Time-Of-Flight Mass Spectrometer

RPLC:

Reversed-phase liquid chromatography

References

  • Brutkiewicz, S., Mendonca, M., Stantz, K., Comerford, K., Bigsby, R., Hutchins, G., et al. (2007). The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence, 22, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Czupryna, J., & Tsourkas, A. (2011). Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells. PLoS ONE, 6, e20073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, J. M., Frahm, J. L., & Li, L. O. (2010). Acyl-coenzyme a synthetases in metabolic control. Current Opinion Lipidol, 21, 212–217.

    Article  CAS  Google Scholar 

  • Gatignol, A., Durand, H., & Tiraby, G. (1988). Bleomycin resistance conferred by a drug-binding protein. FEBS Lett, 230, 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. G., Keller, G. A., & Subramani, S. (1987). Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol, 105, 2921–2923.

    Article  Google Scholar 

  • Greer, L. F, 3rd, & Szalay, A. A. (2002). Imaging of light emission from the expression of luciferases in living cells and organisms: A review. Luminescence, 17, 43–74.

    Article  CAS  PubMed  Google Scholar 

  • Gulick, A. M. (2009). Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol, 4, 811–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guranowski, A., Sillero, M. A. G., & Sillero, A. (1990). Firefly luciferase synthesizes P1, P 4-bis (5′-adenosyl) tetraphosphate (Ap4A) and other dinucleoside polyphosphates. FEBS Lett, 271, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Zhu, Z., Plate, L., Tautenhahn, R., Chen, S., O’Brien, P. J., et al. (2013). Toward ‘Omic’ scale metabolite profiling: a dual separation—mass spectrometry approach for coverage of lipids and central carbon metabolism. Anal Chem, 85, 6876–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, G. A., Gould, S., Deluca, M., & Subramani, S. (1987). Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc Natl Acad Sci USA, 84, 3264–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyaerts, M., Remory, I., Caveliers, V., Breckpot, K., Bos, T. J., Poelaert, J., et al. (2012). Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging. PLoS ONE, 7, e30061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy, W. D., DeLuca, M., & Travis, J. (1967). Molecular uniformity in biological catalyses. The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared. Science, 157, 150–160.

    Article  CAS  PubMed  Google Scholar 

  • Milsom, C. C., Lee, C. R., Hackl, C., Man, S., & Kerbel, R. S. (2013). Differential post-surgical metastasis and survival in SCID, NOD-SCID and NOD-SCID-IL-2Rgamma(null) mice with parental and subline variants of human breast cancer: implications for host defense mechanisms regulating metastasis. PLoS ONE, 8, e71270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oba, Y., Iida, K., & Inouye, S. (2009). Functional conversion of fatty acyl-CoA synthetase to firefly luciferase by site-directed mutagenesis: a key substitution responsible for luminescence activity. FEBS Lett, 583, 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  • Oba, Y., Ojika, M., & Inouye, S. (2003). Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase. FEBS Lett, 540, 251–254.

    Article  CAS  PubMed  Google Scholar 

  • Oliva-Trastoy, M., Defais, M., & Larminat, F. (2005). Resistance to the antibiotic Zeocin by stable expression of the Sh ble gene does not fully suppress Zeocin-induced DNA cleavage in human cells. Mutagenesis, 20, 111–114.

    Article  PubMed  Google Scholar 

  • Patti, G. J., Tautenhahn, R., Rinehart, D., Cho, K., Shriver, L. P., Manchester, M., et al. (2013). A view from above: cloud plots to visualize global metabolomic data. Anal Chem, 85, 798–804.

    Article  CAS  PubMed  Google Scholar 

  • Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Prot, 7, 508–516.

    Article  CAS  Google Scholar 

  • Schipper, M. L., Patel, M. R., & Gambhir, S. S. (2006). Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells. Mol Imaging Biol, 8, 218–225.

    Article  PubMed  Google Scholar 

  • Sim, H., Bibee, K., Wickline, S., & Sept, D. (2011). Pharmacokinetic modeling of tumor bioluminescence implicates efflux, and not influx, as the bigger hurdle in cancer drug therapy. Cancer Res, 71, 686–692.

    Article  CAS  PubMed  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem, 84, 5035–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodossiou, T., Hothersall, J. S., Woods, E. A., Okkenhaug, K., Jacobson, J., & MacRobert, A. J. (2003). Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer Res, 63, 1818–1821.

    CAS  PubMed  Google Scholar 

  • Thorne, N., Shen, M., Lea, W. A., Simeonov, A., Lovell, S., Auld, D. S., et al. (2012). Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Bol, 19, 1060–1072.

    Article  CAS  Google Scholar 

  • Tiffen, J. C., Bailey, C. G., Ng, C., Rasko, J. E., & Holst, J. (2010). Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. MolCancer, 9, 299.

    CAS  Google Scholar 

  • van Staveren, W. C., Solis, D. Y., Hebrant, A., Detours, V., Dumont, J. E., & Maenhaut, C. (2009). Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim et Biophys Acta, 1795, 92–103.

    Google Scholar 

  • Watkins, P. A., & Ellis, J. M. (1822). Peroxisomal acyl-CoA synthetases. Biochim et Biophys Acta, 2012, 1411–1420.

    Google Scholar 

  • Zhang, C. C., Yan, Z., Li, W., Kuszpit, K., Painter, C. L., Zhang, Q., et al. (2012). [(18)F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res, 18, 1303–1312.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z. J., Schultz, A. W., Wang, J., Johnson, C. H., Yannone, S. M., Patti, G. J., et al. (2013). Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Prot, 8, 451–460.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Cathy Zhang and Max Hallin (Pfizer Oncology Research) for insightful discussions. These studies were funded by Pfizer and National Institutes of Health grants 5R01CA170737-02 (GS and BHF), P30 MH062261-13 (GS), 1R21CA170492-01 (GS) and W81XWH-13-1-0402 (GS).

Conflict of interests

The authors declare no Conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary Siuzdak or Peter J. O’Brien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.H., Fisher, T.S., Hoang, L.T. et al. Luciferase does not alter metabolism in cancer cells. Metabolomics 10, 354–360 (2014). https://doi.org/10.1007/s11306-014-0622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0622-5

Keywords

Navigation