Skip to main content

Advertisement

Log in

Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The direct analysis in real-time (DART) ion source and HPLC-electrospray mass spectrometry were applied in non-targeted metabolomic analyses of fruits of an orange bud mutant, ‘Hong Anliu’ along with its parental wild-type, ‘Anliu’. Fruits of the two isogenic cultivars were sampled at three different ripening stages, i.e. 120, 170 and 220 days after flowering. More than 130 metabolites were tentatively identified, including acids, sugars, flavonoids, alkaloids, limonoids, coumarins, amino acids, and plant hormones. Metabolomic analyses revealed that, compared to its wild type, the bud mutant fruit is characterized by higher levels of monosaccharides and disaccharides and lower levels of organic acids such as citric acid, malic acid and quinic acid, which agrees well with the anticipated fruit quality benefits of the mutation. In addition, many secondary metabolites, such as flavonoids, showed significant differences between the two genotypes, indicating that the whole fruit metabolome is significantly changed due to the bud mutation. This study provided a comprehensive assessment of metabolites in orange fruits, and revealed metabolomic differences in fruits between two isogenic orange genotypes. The results are helpful for understanding how the bud mutation in ‘Hong Anliu’ impacts the physiological and biochemical processes of orange fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., et al. (2012). KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiology, 53(2), e1.

    Article  CAS  PubMed  Google Scholar 

  • Alquezar, B., Rodrigo, M. J., & Zacarías, L. (2008). Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry, 69(10), 1997–2007.

    Article  CAS  PubMed  Google Scholar 

  • Anagnostopoulou, M. A., Kefalas, P., Papageorgiou, V. P., Assimopoulou, A. N., & Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chemistry, 94(1), 19–25.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., & Gattuso, G. (2010). Flavonoid composition and antioxidant activity of juices from chinotto (Citrus × myrtifolia Raf.) fruits at different ripening stages. Journal of Agricultural and Food Chemistry, 58(5), 3031–3036.

    Article  CAS  PubMed  Google Scholar 

  • Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry, 45(12), 4505–4515.

    Article  Google Scholar 

  • Borges, D. L. G., Sturgeon, R. E., Welz, B., Curtius, A. J., & Mester, Z. (2009). Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Analytical Chemistry, 81(23), 9834–9839.

    Article  CAS  PubMed  Google Scholar 

  • Böttcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D., et al. (2008). Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiology, 147(4), 2107–2120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinton, S. K. (1998). Lycopene: Chemistry, biology, and implications for human health and disease. Nutrition Reviews, 56, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Cody, R. B. (2009). Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Analytical Chemistry, 81(3), 1101–1107.

    Article  CAS  PubMed  Google Scholar 

  • Cody, R. B., Laramee, J. A., Nilles, J. M., & Durst, H. D. (2005). Direct analysis in real time (DARTtm) mass spectrometry. JEOL News, 40(1), 8–12.

    Google Scholar 

  • Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146(2), 387–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frydman, A., Liberman, R., Huhman, D. V., Carmeli-Weissberg, M., Sapir-Mir, M., Ophir, R., et al. (2013). The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: Evolution of branch-forming rhamnosyltransferases under domestication. Plant Journal, 73(1), 166–178.

    Article  CAS  PubMed  Google Scholar 

  • Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., & Caristi, C. (2007). Flavonoid composition of citrus juices. Molecules, 12(8), 1641–1673.

    Article  CAS  PubMed  Google Scholar 

  • Gu, H., Pan, Z., Xi, B., Asiago, V., Musselman, B., & Raftery, D. (2011). Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: Application to the detection of breast cancer. Analytical Chimica Acta, 686, 57–63.

    Article  CAS  Google Scholar 

  • Haefliger, O. P., & Jeckelmann, N. (2007). Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Rapid Communications in Mass Spectrometry, 21(8), 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  • Katz, E., Boo, K. H., Kim, H. Y., Eigenheer, R. A., Phinney, B. S., Shulaev, V., et al. (2011). Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 62(15), 5367–5384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. J., Jee, E. H., Ahn, K. S., Choi, H. S., & Jang, Y. P. (2010). Identification of marker compounds in herbal drugs on TLC with DART-MS. Archives of Pharmacal Research, 33(9), 1355–1359.

    Article  CAS  PubMed  Google Scholar 

  • Kuljarachanan, T., Devahastin, S., & Chiewchan, N. (2009). Evolution of antioxidant compounds in lime residues during drying. Food Chemistry, 113(4), 944–949.

    Article  CAS  Google Scholar 

  • Ladanyia, M., & Ladaniya, M. (2008). Citrus Fruit: Biology. Technology and Evaluation: Academic Press.

    Google Scholar 

  • Li, Y. (2012). Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion). Rapid Communications in Mass Spectrometry, 26(10), 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Shrestha, B., & Vertes, A. (2007). Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Analytical Chemistry, 79, 523.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Shrestha, B., & Vertes, A. (2008). Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Analytical Chemistry, 80, 407.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Jiang, D., Cheng, Y., Deng, X., Chen, F., Fang, L., et al. (2013). Chemotaxonomic study of citrus, poncirus and fortunella genotypes based on peel oil volatile compounds-deciphering the genetic origin of Mangshanyegan (Citrus nobilis Lauriro). PLoS ONE, 8(3), e58411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Xu, J., Liu, Y. Z., Zhao, X. L., Deng, X. X., Guo, L. L., et al. (2007). A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). Journal of Experimental Botany, 58(15–16), 4161–4171.

    Article  CAS  PubMed  Google Scholar 

  • Maleknia, S. D., Vail, T. M., Cody, R. B., Sparkman, D. O., Bell, T. L., & Adams, M. A. (2009). Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry. Rapid Communications in Mass Spectrometry, 23(16), 2241–2246.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, S. (1980). Vitamin C contents of citrus fruit and their products: A review. Journal of Agricultural and Food Chemistry, 28(1), 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z. Y., Liu, Q., Yun, Z., Zeng, W. F., Guan, R., Xu, Q., et al. (2009). Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (citrus sinensis [L.] osbeck). Proteomics, 9, 5455–5470.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z. Y., Zeng, Y. L., An, J. Y., Ye, J. L., Xu, Q., & Deng, X. X. (2012). An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 75(9), 2670–2684.

    Article  CAS  PubMed  Google Scholar 

  • Ramful, D., Tarnus, E., Aruoma, O. I., Bourdon, E., & Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International, 44(7), 2088–2099.

    Article  CAS  Google Scholar 

  • Rapisarda, P., Tomaino, A., Cascio, R. L., Bonina, F., Pasquale, A. D., & Saija, A. (1999). Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 47(11), 4718–4723.

    Article  CAS  PubMed  Google Scholar 

  • Saanng’onyo, D., Selby, G., & Smith, D. L. (2012). Validation of a direct analysis in real time mass spectrometry (DART-MS) method for the quantitation of six carbon sugars in a saccharification matrix. Analytical Method, 4, 3460–3465.

    Article  Google Scholar 

  • Shelley, J. T., & Hieftje, G. M. (2010). Ionization matrix effects in plasma-based ambient mass spectrometry sources. Journal of Analytical Atomic Spectrometry, 25, 345–350.

    Article  CAS  Google Scholar 

  • Slisz, A. M., Breksa, A. P., Mishchuk, D. O., McCollum, G., & Slupsky, C. M. (2012). Metabolomic analysis of citrus infection by ‘Candidatus Liberibacter’ reveals insight into pathogenicity. Journal of Proteome Research, 11, 4223–4230.

    Article  CAS  PubMed  Google Scholar 

  • Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104(2), 466–479.

    Article  CAS  Google Scholar 

  • Xie, Y. Y., Luo, D., Cheng, Y. J., Ma, J. F., Wang, Y. M., Liang, Q. L., et al. (2012). Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MSn-based multicomponent quantification fingerprint. Journal of Agricultural and Food Chemistry, 60(33), 8213–8224.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Yu, K. Q., Zhu, A. D., Ye, J. L., Liu, Q., & Zhang, J. C. (2009). Deng XX (2009) Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics, 10, 540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yew, J. Y., Cody, R. B., & Kravitz, E. A. (2008). Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proceedings of the National Academy, USA, 105(20), 7135–7140.

    Article  CAS  Google Scholar 

  • Yun, Z., Gao, H. J., Liu, P., Liu, S. Z., Luo, T., Jin, S., et al. (2013). Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 13, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., McDonald, J. F., & Fernandez, F. M. (2010). Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting. Journal of the American Society for Mass Spectrometry, 21, 68–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chip Cody at JEOL, USA, Inc. for his help and discussion about the PCA calculations. This work was supported by the National Basic Research Program of China (973 Program, 2011CB100601), National Natural Science Foundation of China (Nos. 31330066, 31201612), and Ministry of Education of China (20120146120032) to Z.P, and National Science Foundation (Grant# IOS1146589) to S.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyuan Xiao.

Additional information

Zhiyong Pan and Yue Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Li, Y., Deng, X. et al. Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics 10, 508–523 (2014). https://doi.org/10.1007/s11306-013-0597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0597-7

Keywords

Navigation