Skip to main content

Advertisement

Log in

Thermo-electro-mechanical size-dependent postbuckling response of axially loaded piezoelectric shear deformable nanoshells via nonlocal elasticity theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The current study addresses the size-dependent nonlinear thermo-electro-mechanical instability of piezoelectric nanoshells under a combined action of axial compressive load, lateral electric field and uniform changes in temperature. The non-classical formulations given herein are built upon the nonlocal elasticity theory within the framework of the shear deformation shell theory. On the basis of the minimum potential energy of the system and using a boundary layer theory of shell buckling, the nonlocal-based governing equations are deduced incorporating the nonlinear prebuckling deformations and initial geometric imperfection sensitivity. After that, a perturbation-based solution methodology is put to use in order to anticipate the size-dependent thermo-electro-mechanical postbuckling response of piezoelectric nanoshells corresponding to different nonlocal parameters, applied electric voltages and temperature changes. It is displayed that for the both local and nonlocal models with and without initial geometric imperfection, a lateral electric field coming from a positive applied voltage leads to increase the axial stiffness of piezoelectric nanoshell in such a way that the critical load and width of postbuckling domain increase, but no considerable change occurs in the minimum load of the postbuckling regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  • Ansari R, Sahmani S (2012) Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simul 17:1965–1979

    Article  MathSciNet  Google Scholar 

  • Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered grapheme sheets. Phys Lett A 375:53–62

    Article  Google Scholar 

  • Ansari R, Sahmani S, Rouhi H (2011) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique. Comput Mater Sci 50:3050–3055

    Article  Google Scholar 

  • Arefi M (2016) Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Appl Math Mech 37:289–302

    Article  MathSciNet  MATH  Google Scholar 

  • Asemi SR, Farajpour A, Mohammadi M (2014) Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonolocal elasticity theory. Compos Struct 116:703–712

    Article  Google Scholar 

  • Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeams bending, buckling and vibration. Physica E 41:1651–1655

    Article  Google Scholar 

  • Chroscielewski J, Pietraszkiewicz W, Witkowski W (2010) On shear correction factors in the non-linear theory of elastic shells. Int J Solids Struct 47:3537–3545

    Article  MATH  Google Scholar 

  • Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  • Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surface. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  • Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A Solids 29:49–55

    Article  MathSciNet  Google Scholar 

  • Hu Y-G, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    Article  MATH  Google Scholar 

  • Huang GY, Yu SW (2006) Effect of surface piezoelectricity on the electromechanical behavior of piezoelectric ring. Phys Status Solidi B 243:R22–R24

    Article  Google Scholar 

  • Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301–101324

    Article  Google Scholar 

  • Karabalin RB, Matheny MH, Feng XL, Defay E, Le Rhun G, Marcoux C, et al (2009) Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl Phys Lett 95:103111-10311-4

  • Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Li L, Hu Y (2016) Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 107:77–97

    Article  MathSciNet  Google Scholar 

  • Li HB, Wang X (2016) Nonlinear dynamic characteristics of grapheme/piezoelectric laminated films in sensing moving loads. Sens Actuators A 238:80–94

    Article  Google Scholar 

  • Li HB, Li YD, Wang X, Huang X (2015) Nonlinear vibration characteristics of grapheme/piezoelectric sandwich films under electric loading based on nonlocal elastic theory. J Sound Vib 358:285–300

    Article  Google Scholar 

  • Liu T, Hai M, Zhao M (2008) Delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge indentation of a film/substrate system. Eng Fract Mech 75:4909–4919

    Article  Google Scholar 

  • Mindlin R (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3:1–7

    Article  Google Scholar 

  • Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Peng X-W, Guo X-M, Liu L, Wu B-J (2015) Scale effects on nonlocal buckling analysis of bilayer composite plates under non-uniform loads. Appl Math Mech 36:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Potapov VD (2013) Stability via nonlocal continuum mechanics. Int J Solids Struct 50:637–641

    Article  Google Scholar 

  • Pu J, Yan X, Jiang Y, Chang C, Lin L (2010) Piezoelectric actuation of direct-write electrospun fibers. Sens Actuators A 164:131–136

    Article  Google Scholar 

  • Sahmani S, Aghdam MM, Bahrami M (2016a) Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int J Mech Sci 107:170–179

    Article  Google Scholar 

  • Sahmani S, Bahrami M, Aghdam MM (2016b) Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int J Eng Sci 99:92–106

    Article  MathSciNet  Google Scholar 

  • Shen H-S (1998) Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. Int J Mech Sci 40:339–355

    Article  MATH  Google Scholar 

  • Shen H-S (2001) Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators. Eur J Mech A Solids 20:1007

    Article  MATH  Google Scholar 

  • Shen H-S (2008) Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part I: prediction under axial compression. Compos Struct 82:346–391

    Article  Google Scholar 

  • Shen H-S, Li QS (2002) Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions. Int J Mech Sci 44:1731–1754

    Article  MATH  Google Scholar 

  • Şimşek M (2011) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mater Sci 50:2112–2123

    Article  Google Scholar 

  • Sinha N, Wabiszewski GE, Mahameed R, Felmetsger VV, Tanner SM, Carpick RW, Piazza G (2009) Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl Phys Lett 95:053106-053106-3

  • Tanner SM, Gray JM, Rogers CT, Sanford N (2007) High-Q GaN nanowire resonators and oscillators. Appl Phys Lett 91:203117-203117-3

  • Wang ZL (2010) Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Lett 6:540–552

    Google Scholar 

  • Wang Y-Z, Li F-M (2014) Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int J Non Linear Mech 61:74–79

    Article  Google Scholar 

  • Wang Q, Liew KM (2007) Application off nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363:236–242

    Article  Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  • Wang BL, Wang KF (2013) Vibration analysis of embedded nanotubes using nonlocal continuum theory. Compos B Eng 47:96–101

    Article  Google Scholar 

  • Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768–2772

    Article  Google Scholar 

  • Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22:245703

    Article  Google Scholar 

  • Yan Y, Wang WQ, Zhang LX (2010) Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field. Appl Math Model 34:3422–3429

    Article  MathSciNet  MATH  Google Scholar 

  • Yan JW, Tong LH, Li C, Zhu Y, Wang ZW (2015) Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory. Compos Struct 125:304–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahmani.

Appendices

Appendix A

The solutions in asymptotic forms corresponding to each of independent variables are extracted as below

$$ \begin{aligned} W & = {\mathcal{A}}_{00}^{\left( 0 \right)} + \epsilon \left[ {{\mathcal{A}}_{00}^{(1)} - {\mathcal{A}}_{00}^{(1)} \left( {\sin \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right) + \cos \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{\varGamma X}{\sqrt \epsilon }}} - {\mathcal{A}}_{00}^{(1)} \left( {\sin \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + \cos \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ & \quad + \epsilon^{2} \left[ {{\mathcal{A}}_{00}^{\left( 2 \right)} + {\mathcal{A}}_{11}^{\left( 2 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{02}^{\left( 2 \right)} \cos \left( {2nY} \right) - \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{\left( 2 \right)} \cos \left( {2nY} \right)} \right)\left( {\sin \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right) + \cos \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{\varGamma X}{\sqrt \epsilon }}} - \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{\left( 2 \right)} \cos \left( {2nY} \right)} \right)\left( {\sin \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right) + \cos \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)} \right)e^{{ - \frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \\ & \quad + \epsilon^{4} \left[ {{\mathcal{A}}_{00}^{\left( 4 \right)} + {\mathcal{A}}_{11}^{\left( 4 \right)} \sin \left( {mX} \right)\sin \left( {nY} \right) + {\mathcal{A}}_{20}^{\left( 4 \right)} \cos \left( {2mX} \right) + {\mathcal{A}}_{02}^{(4)} \cos (2nY) + {\mathcal{A}}_{13}^{(4)} \sin \left( {mX} \right)\sin \left( {3nY} \right) + {\mathcal{A}}_{22}^{(4)} \cos \left( {2mX} \right)\cos \left( {2nY} \right)} \right] + O\left( {\epsilon^{5} } \right), \\ \end{aligned} $$
(29)
$$ \begin{aligned} \varPsi_{X} & = \epsilon^{3/2} \left[ {{\mathcal{A}}_{00}^{(1)} c_{10}^{(3/2)} \sin \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right)e^{{ - \frac{\varGamma X}{\sqrt \epsilon }}} + {\mathcal{A}}_{00}^{(1)} c_{10}^{(3/2)} \sin \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)e^{{ - \frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ & \quad + \epsilon^{5/2} \left[ {\left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{\left( 2 \right)} \cos \left( {2nY} \right)} \right)c_{10}^{(5/2)} \sin \left( {\frac{\varGamma X}{\sqrt \epsilon }} \right)e^{{ - \frac{\varGamma X}{\sqrt \epsilon }}} + \left( {{\mathcal{A}}_{00}^{(2)} + {\mathcal{A}}_{02}^{\left( 2 \right)} \cos \left( {2nY} \right)} \right)c_{10}^{(5/2)} \sin \left( {\frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }} \right)e^{{ - \frac{{\varGamma \left( {\pi - X} \right)}}{\sqrt \epsilon }}} } \right] \hfill \\ & \quad + \epsilon^{3} \left[ {{\mathcal{C}}_{11}^{\left( 3 \right)} \cos \left( {mX} \right){ \sin }\left( {nY} \right)} \right] + O\left( {\epsilon^{5} } \right), \hfill \\ \end{aligned} $$
(30)
(31)
$$ \varPsi_{Y} = \epsilon^{3} \left[ {{\mathcal{D}}_{11}^{(3)} \sin \left( {mX} \right){ \cos }(nY) + {\mathcal{D}}_{02}^{\left( 3 \right)} { \sin }(2nY)} \right] + O\left( {\epsilon^{5} } \right). $$
(32)

Appendix B

$$ {\mathcal{P}}_{x}^{\left( 0 \right)} = \frac{1}{2}\left\{ {K_{0} \epsilon^{ - 1} + K_{3} \beta^{2} \epsilon } \right\}, $$
(33)
$$ {\mathcal{P}}_{x}^{\left( 2 \right)} = - \frac{1}{2}\left\{ {\left( {\frac{{6n^{2} \beta^{2} K_{0}^{2} }}{{K_{2} }}} \right)\epsilon^{ - 1} - \left( {2K_{6} \beta^{2} n^{2} + \frac{{K_{0} K_{4} H_{20} \beta^{4} n^{4} + 4K_{0} K_{5} H_{20} \beta^{2} n^{2} }}{{2(K_{0} H_{20} - K_{4} )}} + \frac{{K_{0}^{2} H_{20} \beta^{4} n^{4} + 4K_{0} K_{5} \beta^{2} n^{2} }}{{2(K_{0} H_{20} - K_{4} )}} + \frac{{K_{0}^{2} \beta^{4} n^{4} + 4K_{0} K_{5} \beta^{2} n^{2} }}{{2(K_{0} - K_{4} )}}} \right)\epsilon } \right\} , $$
(34)
$$ {\mathcal{P}}_{x}^{\left( 4 \right)} = \frac{1}{2}\left\{ {\left( {\frac{{12K_{0}^{3} K_{7} H_{13} \beta^{2} n^{4} }}{{K_{2}^{2} \left( {K_{0} H_{13} - K_{7} } \right)}} + \frac{{4\beta^{2} n^{4} K_{0}^{3} \left( {K_{0} + 2K_{7} } \right)}}{{K_{2}^{2} \left( {K_{0} - K_{7} } \right)}} + \frac{{16\beta^{4} n^{4} K_{0}^{3} }}{{K_{2}^{2} }}} \right)\epsilon^{ - 1} } \right\} , $$
(35)
$$ \delta_{x}^{(0)} = \vartheta_{1} {\mathcal{P}}_{x} + \left( {\frac{{\alpha \vartheta_{2}^{2} {\mathcal{P}}_{x}^{2} }}{\pi } - \frac{{2\vartheta_{2}^{2} {\mathcal{P}}_{x} }}{{\pi \vartheta_{1} a}}} \right)\epsilon^{1/2} , $$
(36)
$$ \delta_{x}^{(2)} = \frac{{m^{2} \epsilon }}{16} , $$
(37)
$$ \delta_{x}^{(4)} = \frac{{\alpha K_{0}^{2} \epsilon^{ - 3/2} }}{{8\pi^{2} K_{2}^{2} }} + \frac{{m^{2} }}{4}\left( {\frac{{K_{0} H_{20} \beta^{2} n^{2} + 4K_{5} }}{{4\left( {K_{0} H_{20} - K_{4} } \right)}}} \right)^{2} \epsilon^{3} , $$
(38)
$$ \delta_{x}^{E} = \frac{{d_{31} R{\mathcal{V}}}}{{2h^{2} }}, $$
(39)
$$ \delta_{x}^{T} = \frac{\alpha R\Delta T}{2h}, $$
(40)

where

$$ H_{11} = 1 + \pi^{2} {\mathcal{G}}^{2} \left( {m^{2} + \beta^{2} n^{2} } \right) , \quad H_{02} = 1 + 4\pi^{2} {\mathcal{G}}^{2} \beta^{2} n^{2} , $$
$$ H_{20} = 1 + 4\pi^{2} {\mathcal{G}}^{2} m^{2} , \quad H_{13} = 1 + \pi^{2} {\mathcal{G}}^{2} \left( {m^{2} + 9\beta^{2} n^{2} } \right), $$
(41)

where \( K_{i} (i = 0, \ldots ,7) \) are constant parameters extracted via the perturbation sets of equations.

$$ {\mathcal{S}}_{1} = - \frac{{K_{0} }}{{K_{2} }}\epsilon^{ - 1} + \left( {\frac{{a_{12}^{*} }}{{\left( {a_{11}^{*} } \right)^{2} - \left( {a_{12}^{*} } \right)^{2} }}} \right)\left( {2{\mathcal{P}}_{x}^{\left( 2 \right)} } \right), $$
(42)
$$ {\mathcal{S}}_{2} = \left( {\frac{{a_{12}^{*} }}{{\left( {a_{11}^{*} } \right)^{2} - \left( {a_{12}^{*} } \right)^{2} }}} \right)\left( {2{\mathcal{P}}_{x}^{\left( 0 \right)} } \right) + \frac{{d_{31} R{\mathcal{V}}}}{{h^{2} }} + \frac{\alpha R\Delta T}{h}. $$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Fattahi, A.M. Thermo-electro-mechanical size-dependent postbuckling response of axially loaded piezoelectric shear deformable nanoshells via nonlocal elasticity theory. Microsyst Technol 23, 5105–5119 (2017). https://doi.org/10.1007/s00542-017-3316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3316-x

Keywords

Navigation