Skip to main content

Advertisement

Log in

Novel Biomarkers for Pancreatic Cysts

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

With increased utilization and ongoing advancements in cross-sectional abdominal imaging, the identification of a pancreatic cyst has become a frequent finding. While many pancreatic cysts are associated with a benign clinical course, others may transform into pancreatic ductal adenocarcinoma. However, distinguishing a benign from a malignant pancreatic cyst or pancreatic cyst with malignant potential on the basis of standard clinical findings, imaging parameters and ancillary studies can be challenging. Hence, a significant interest within the past decade has been the identification of novel biomarkers to accurately classify and prognosticate a pancreatic cyst. Within this review, we discuss novel DNA, miRNA, protein and metabolite biomarkers, and their relevance in clinical practice. In addition, we focus on future areas of research that have the potential to change pancreatic cyst management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laffan TA, Horton KM, Klein AP, Berlanstein B, et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol. 2008;191:802–807.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol. 2010;105:2079–2084.

    Article  PubMed  Google Scholar 

  3. de Jong K, Nio CY, Hermans JJ, Dijkgraaf MG, et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol. 2010;8:806–811.

    Article  PubMed  Google Scholar 

  4. Pitman MB, Centeno BA, Ali SZ, Genevay M, et al. Standardized terminology and nomenclature for pancreatobiliary cytology: the Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2014;42:338–350.

    Article  PubMed  Google Scholar 

  5. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin North Am. 2007;36:831–849, vi.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matthaei H, Schulick RD, Hruban RH, Maitra A. Cystic precursors to invasive pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011;8:141–150.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sohn TA, Yeo CJ, Cameron JL, Hruban RH, et al. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg. 2004;239:788–797. (discussion 797-789).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yachida S, Jones S, Bozic I, Antal T, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salvia R, Fernandez-del Castillo C, Bassi C, Thayer SP, et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg. 2004;239:678–685. (discussion 685-677).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanaka M, Chari S, Adsay V, Fernandez-del Castillo C, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.

    Article  PubMed  Google Scholar 

  11. Tanaka M, Fernandez-del Castillo C, Adsay V, Chari S, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–197.

    Article  PubMed  Google Scholar 

  12. Pelaez-Luna M, Chari ST, Smyrk TC, Takahashi N, et al. Do consensus indications for resection in branch duct intraductal papillary mucinous neoplasm predict malignancy? A study of 147 patients. Am J Gastroenterol. 2007;102:1759–1764.

    Article  PubMed  Google Scholar 

  13. Tang RS, Weinberg B, Dawson DW, Reber H, et al. Evaluation of the guidelines for management of pancreatic branch-duct intraductal papillary mucinous neoplasm. Clin Gastroenterol Hepatol. 2008;6:815–819. (quiz 719).

    Article  PubMed  Google Scholar 

  14. Nagai K, Doi R, Ito T, Kida A, et al. Single-institution validation of the International Consensus guidelines for treatment of branch duct intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg. 2009;16:8.

    Article  Google Scholar 

  15. Goh BK, Tan DM, Ho MM, Lim TK, et al. Utility of the Sendai Consensus guidelines for branch-duct intraductal papillary mucinous neoplasms: a systematic review. J Gastrointest Surg. 2014;18:1350–1357.

    Article  PubMed  Google Scholar 

  16. Kaimakliotis P, Riff B, Pourmand K, Chandrasekhara V, et al. Sendai and Fukuoka Consensus guidelines identify advanced neoplasia in patients with suspected mucinous cystic neoplasms of the pancreas. Clin Gastroenterol Hepatol. 2015;13:1808–1815.

    Article  PubMed  Google Scholar 

  17. Hsiao CY, Yang CY, Wu JM, Kuo TC, Tien YM. Utility of the 2006 Sendai and 2012 Fukuoka guidelines for the management of intraductal papillary mucinous neoplasm of the pancreas: a single-center experience with 138 surgically treated patients. Medicine (Baltimore). 2016;95:e4922.

    Article  Google Scholar 

  18. Scheiman JM, Hwang JH, Moayyedi P. American Gastroenterological Association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:824–848.e822.

    Article  PubMed  Google Scholar 

  19. Buscaglia JM, Giday SA, Kantsevoy SV, Jagannath SB, et al. Patient- and cyst-related factors for improved prediction of malignancy within cystic lesions of the pancreas. Pancreatology. 2009;9:631–638.

    Article  PubMed  Google Scholar 

  20. Correa-Gallego C, Ferrone CR, Thayer SP, Wargo JA, et al. Incidental pancreatic cysts: do we really know what we are watching? Pancreatology. 2010;10:144–150.

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Jong K, Nio CY, Mearadji B, Phoa SS, et al. Disappointing interobserver agreement among radiologists for a classifying diagnosis of pancreatic cysts using magnetic resonance imaging. Pancreas. 2012;41:278–282.

    Article  PubMed  Google Scholar 

  22. Cho CS, Russ AJ, Loeffler AG, Rettammel RJ, et al. Preoperative classification of pancreatic cystic neoplasms: the clinical significance of diagnostic inaccuracy. Ann Surg Oncol. 2013;20:3112–3119.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jones MJ, Buchanan AS, Neal CP, Dennison AR, et al. Imaging of indeterminate pancreatic cystic lesions: a systematic review. Pancreatology. 2013;13:436–442.

    Article  CAS  PubMed  Google Scholar 

  24. Kawaguchi Y, Mine T. Endoscopic approach to the diagnosis of pancreatic cystic tumor. World J Gastrointest Oncol. 2016;8:159–164.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salvia R, Malleo G, Marchegiani G, Pennacchio S, et al. Pancreatic resections for cystic neoplasms: from the surgeon’s presumption to the pathologist’s reality. Surgery. 2012;152:S135–S142.

    Article  PubMed  Google Scholar 

  26. Suzuki R, Thosani N, Annangi S, Guha S, Bhutani MS. Diagnostic yield of EUS-FNA-based cytology distinguishing malignant and benign IPMNs: a systematic review and meta-analysis. Pancreatology. 2014;14:380–384.

    Article  PubMed  Google Scholar 

  27. Thosani N, Thosani S, Qiao W, Fleming JB, et al. Role of EUS-FNA-based cytology in the diagnosis of mucinous pancreatic cystic lesions: a systematic review and meta-analysis. Dig Dis Sci. 2010;55:2756–2766.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goh BK, Tan DM, Thng CH, Lee SY, et al. Are the Sendai and Fukuoka Consensus guidelines for cystic mucinous neoplasms of the pancreas useful in the initial triage of all suspected pancreatic cystic neoplasms? A single-institution experience with 317 surgically-treated patients. Ann Surg Oncol. 2014;21:1919–1926.

    Article  PubMed  Google Scholar 

  29. Sahora K, Mino-Kenudson M, Brugge W, Thayer SP, et al. Branch duct intraductal papillary mucinous neoplasms: does cyst size change the tip of the scale? A critical analysis of the revised international consensus guidelines in a large single-institutional series. Ann Surg. 2013;258:466–475.

    Article  PubMed  Google Scholar 

  30. Goh BK, Lin Z, Tan DM, Thng CH, et al. Evaluation of the Fukuoka Consensus guidelines for intraductal papillary mucinous neoplasms of the pancreas: results from a systematic review of 1,382 surgically resected patients. Surgery. 2015;158:1192–1202.

    Article  PubMed  Google Scholar 

  31. Ahmad NA, Kochman ML, Brensinger C, Brugge WR, et al. Interobserver agreement among endosonographers for the diagnosis of neoplastic versus non-neoplastic pancreatic cystic lesions. Gastrointest Endosc. 2003;58:59–64.

    Article  PubMed  Google Scholar 

  32. Pitman MB, Lewandrowski K, Shen J, Sahani D, et al. Pancreatic cysts: preoperative diagnosis and clinical management. Cancer Cytopathol. 2010;118:1–13.

    Article  PubMed  Google Scholar 

  33. Khalid A, Brugge W. ACG practice guidelines for the diagnosis and management of neoplastic pancreatic cysts. Am J Gastroenterol. 2007;102:2339–2349.

    Article  PubMed  Google Scholar 

  34. Maker AV, Lee LS, Raut CP, Clancy TE, Swanson RS. Cytology from pancreatic cysts has marginal utility in surgical decision-making. Ann Surg Oncol. 2008;15:3187–3192.

    Article  PubMed  Google Scholar 

  35. Vege SS, Ziring B, Jain R, Moayyedi P. American Gastroenterological Association Institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:819–822. (quize812-813).

    Article  PubMed  Google Scholar 

  36. Singhi AD, Zeh HJ, Brand RE, Nikiforova MN, et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest Endosc. 2016;83:e1102.

    Google Scholar 

  37. Ma GK, Goldberg DS, Thiruvengadam N, Chandrasekhara V, et al. Comparing American Gastroenterological Association pancreatic cyst management guidelines with Fukuoka Consensus guidelines as predictors of advanced neoplasia in patients with suspected pancreatic cystic neoplasms. J Am Coll Surg. 2016;223:e721.

    Article  Google Scholar 

  38. Fernandez-Del Castillo C, Tanaka M. Management of pancreatic cysts: the evidence is not here yet. Gastroenterology. 2015;148:685–687.

    Article  PubMed  Google Scholar 

  39. Lennon AM, Ahuja N, Wolfgang CL. AGA guidelines for the management of pancreatic cysts. Gastroenterology. 2015;149:825.

    Article  PubMed  Google Scholar 

  40. Canto MI, Hruban RH. Managing pancreatic cysts: less is more? Gastroenterology. 2015;148:688–691.

    Article  PubMed  Google Scholar 

  41. Bailey P, Chang DK, Nones K, Johns AL, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  PubMed  Google Scholar 

  42. Jones S, Zhang X, Parsons DW, Lin JC, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khalid A, McGrath KM, Zahid M, Wilson M, et al. The role of pancreatic cyst fluid molecular analysis in predicting cyst pathology. Clin Gastroenterol Hepatol. 2005;3:967–973.

    Article  CAS  PubMed  Google Scholar 

  44. Khalid A, Zahid M, Finkelstein SD, LeBlanc JK, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69:1095–1102.

    Article  PubMed  Google Scholar 

  45. Shen J, Brugge WR, Dimaio CJ, Pitman MB. Molecular analysis of pancreatic cyst fluid: a comparative analysis with current practice of diagnosis. Cancer. 2009;117:217–227.

    PubMed  Google Scholar 

  46. Sreenarasimhaiah J, Lara LF, Jazrawi SF, Barnett CC, Tang SJ. A comparative analysis of pancreas cyst fluid CEA and histology with DNA mutational analysis in the detection of mucin producing or malignant cysts. JOP. 2009;10:163–168.

    PubMed  Google Scholar 

  47. Panarelli NC, Sela R, Schreiner AM, Crapanzano JP, et al. Commercial molecular panels are of limited utility in the classification of pancreatic cystic lesions. Am J Surg Pathol. 2012;36:1434–1443.

    Article  PubMed  Google Scholar 

  48. Toll AD, Kowalski T, Loren D, Bibbo M. The added value of molecular testing in small pancreatic cysts. JOP. 2010;11:582–586.

    PubMed  Google Scholar 

  49. Wu J, Matthaei H, Maitra A, Dal Molin M, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:a66.

    Article  Google Scholar 

  50. Furukawa T, Kuboki Y, Tanji E, Yoshida S, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singhi AD, Nikiforova MN, Fasanella KE, McGrath KM, et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res. 2014;20:4381–4389.

    Article  CAS  PubMed  Google Scholar 

  52. Wu J, Jiao Y, Dal Molin M, Maitra A, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA. 2011;108:21188–21193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee JH, Kim Y, Choi JW, Kim YS. KRAS, GNAS, and RNF43 mutations in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Springerplus. 2016;5:1172.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Springer S, Wang Y, Dal Molin M, Masica DL, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149:1501–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amato E, Molin MD, Mafficini A, Yu J, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233:217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Biankin AV, Biankin SA, Kench JG, Morey AL, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garcia-Carracedo D, Chen ZM, Qiu W, Huang AS, et al. PIK3CA mutations in mucinous cystic neoplasms of the pancreas. Pancreas. 2014;43:245–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sasaki S, Yamamoto H, Kaneto H, Ozeki I, et al. Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep. 2003;10:21–25.

    CAS  PubMed  Google Scholar 

  59. Rosenbaum MW, Jones M, Dudley JC, et al. Next-generation sequencing adds value to the preoperative diagnosis of pancreatic cysts. Cancer Cytopathol. 2017;125:41–47.

    Article  CAS  Google Scholar 

  60. Kanda M, Matthaei H, Wu J, Hong SM, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:e739.

    Article  Google Scholar 

  61. Kanda M, Sadakari Y, Borges M, Topazian M, et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol. 2013;11:e715.

    Article  Google Scholar 

  62. Pea A, Yu J, Rezaee N, et al. Targeted DNA sequencing reveals patterns of local progression in the pancreatic remnant following resection of intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg. 2016. doi:10.1097/SLA.0000000000001817.

  63. Jimenez RE, Warshaw AL, Z’Graggen K, Hartwig W, et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230:501–509. (discussion 509-511).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones M, Zheng Z, Wang J, Dudley J, et al. Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc. 2016;83:140–148.

    Article  PubMed  Google Scholar 

  65. Yeh TS, Cheng AJ, Chen TC, Jan YY, et al. Telomerase activity is a useful marker to distinguish malignant pancreatic cystic tumors from benign neoplasms and pseudocysts. J Surg Res. 1999;87:171–177.

    Article  CAS  PubMed  Google Scholar 

  66. Hata T, Dal Molin M, Suenaga M, Yu J, et al. Cyst fluid telomerase activity predicts the histologic grade of cystic neoplasms of the pancreas. Clin Cancer Res. 2016;22:5141–5151.

    Article  CAS  PubMed  Google Scholar 

  67. D’Angelo B, Benedetti E, Cimini A, Giordano A. MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Res. 2016;36:5571–5575.

    Article  PubMed  Google Scholar 

  68. Sethi A, Sholl LM. Emerging evidence for MicroRNAs as regulators of cancer stem cells. Cancers (Basel). 2011;3:3957–3971.

    Article  CAS  Google Scholar 

  69. Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J Gastrointest Oncol. 2016;8:18–29.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu A, Tetzlaff MT, Vanbelle P, Elder D, et al. MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol. 2009;2:519–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bloomston M, Frankel WL, Petrocca F, Volinia S, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–1908.

    Article  CAS  PubMed  Google Scholar 

  72. Yu J, Li A, Hong SM, Hruban RH, Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18:981–992.

    Article  PubMed  Google Scholar 

  73. Habbe N, Koorstra JB, Mendell JT, Offerhaus GJ, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2009;8:340–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ryu JK, Matthaei H, Dal Molin M, Hong SM, et al. Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology. 2011;11:343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caponi S, Funel N, Frampton AE, Mosca F, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol. 2013;24:734–741.

    Article  CAS  PubMed  Google Scholar 

  76. Farrell JJ, Toste P, Wu N, Li L, et al. Endoscopically acquired pancreatic cyst fluid microRNA 21 and 221 are associated with invasive cancer. Am J Gastroenterol. 2013;108:1352–1359.

    Article  CAS  PubMed  Google Scholar 

  77. Matthaei H, Wylie D, Lloyd MB, Dal Molin M, et al. miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin Cancer Res. 2012;18:4713–4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Henry JC, Bassi C, Giovinazzo F, Bloomston M. MicroRNA from pancreatic duct aspirate differentiates cystic lesions of the pancreas. Ann Surg Oncol. 2013;20:S661–S666.

    Article  PubMed  Google Scholar 

  79. Lubezky N, Loewenstein S, Ben-Haim M, Brazowski E, et al. MicroRNA expression signatures in intraductal papillary mucinous neoplasm of the pancreas. Surgery. 2013;153:663–672.

    Article  PubMed  Google Scholar 

  80. Lee LS, Szafranska-Schwarzbach AE, Wylie D, Doyle LA, et al. Investigating MicroRNA expression profiles in pancreatic cystic neoplasms. Clin Transl Gastroenterol. 2014;5:e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Permuth-Wey J, Chen YA, Fisher K, McCarthy S, et al. A genome-wide investigation of microRNA expression identifies biologically-meaningful microRNAs that distinguish between high-risk and low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS ONE. 2015;10:e0116869.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Paris PL, Chen J, Ngo V, et al. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett. 2015;356:404–409.

    Article  CAS  PubMed  Google Scholar 

  83. Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M. Significance of mucin expression in pancreatobiliary neoplasms. J Hepatobiliary Pancreat Sci. 2010;17:108–124.

    Article  PubMed  Google Scholar 

  84. Moschovis D, Bamias G, Delladetsima I. Mucins in neoplasms of pancreas, ampulla of Vater and biliary system. World J Gastrointest Oncol. 2016;8:725–734.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Carrara S, Cangi MG, Arcidiacono PG, Perri F, et al. Mucin expression pattern in pancreatic diseases: findings from EUS-guided fine-needle aspiration biopsies. Am J Gastroenterol. 2011;106:1359–1363.

    Article  CAS  PubMed  Google Scholar 

  86. Haab BB, Porter A, Yue T, Li L, et al. Glycosylation variants of mucins and CEACAMs as candidate biomarkers for the diagnosis of pancreatic cystic neoplasms. Ann Surg. 2010;251:937–945.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cao Z, Maupin K, Curnutte B, Fallon B, et al. Specific glycoforms of MUC5AC and endorepellin accurately distinguish mucinous from nonmucinous pancreatic cysts. Mol Cell Proteomics. 2013;12:2724–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maker AV, Katabi N, Gonen M, DeMatteo RP, et al. Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg Oncol. 2011;18:199–206.

    Article  PubMed  Google Scholar 

  89. Jabbar KS, Verbeke C, Hyltander AG, Sjovall H, et al. Proteomic mucin profiling for the identification of cystic precursors of pancreatic cancer. J Natl Cancer Inst. 2014;106:9.

    Article  Google Scholar 

  90. Maker AV, Katabi N, Qin LX, Klimstra DS, et al. Cyst fluid interleukin-1beta (IL1beta) levels predict the risk of carcinoma in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2011;17:1502–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmidt CM, Yip-Schneider MT, Ralstin MC, Wentz S, et al. PGE(2) in pancreatic cyst fluid helps differentiate IPMN from MCN and predict IPMN dysplasia. J Gastrointest Surg. 2008;12:243–249.

    Article  PubMed  Google Scholar 

  92. Lee LS, Banks PA, Bellizzi AM, Sainani NI, et al. Inflammatory protein profiling of pancreatic cyst fluid using EUS-FNA in tandem with cytokine microarray differentiates between branch duct IPMN and inflammatory cysts. J Immunol Methods. 2012;382:142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allen PJ, Qin LX, Tang L, Klimstra D, et al. Pancreatic cyst fluid protein expression profiling for discriminating between serous cystadenoma and intraductal papillary mucinous neoplasm. Ann Surg. 2009;250:754–760.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Park J, Yun HS, Lee KH, Lee KT, et al. Discovery and validation of biomarkers that distinguish mucinous and nonmucinous pancreatic cysts. Cancer Res. 2015;75:3227–3235.

    Article  CAS  PubMed  Google Scholar 

  95. Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 2008;5:e85.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bausch D, Mino-Kenudson M, Fernandez-Del Castillo C, Warshaw AL, et al. Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2009;13:1948–1954. (discussion 1954).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tun MT, Pai RK, Kwok S, Dong A, et al. Diagnostic accuracy of cyst fluid amphiregulin in pancreatic cysts. BMC Gastroenterol. 2012;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raty S, Sand J, Laukkarinen J, Vasama K, et al. Cyst fluid SPINK1 may help to differentiate benign and potentially malignant cystic pancreatic lesions. Pancreatology. 2013;13:530–533.

    Article  CAS  PubMed  Google Scholar 

  99. Das KK, Xiao H, Geng X, Fernandez-Del-Castillo C, et al. mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN). Gut. 2014;63:1626–1634.

    CAS  PubMed  Google Scholar 

  100. Park WG, Wu M, Bowen R, Zheng M, et al. Metabolomic-derived novel cyst fluid biomarkers for pancreatic cysts: glucose and kynurenine. Gastrointest Endosc. 2013;78:e292.

    Google Scholar 

  101. Zikos T, Pham K, Bowen R, Chen AM, et al. Cyst fluid glucose is rapidly feasible and accurate in diagnosing mucinous pancreatic cysts. Am J Gastroenterol. 2015;110:909–914.

    Article  PubMed  Google Scholar 

Download references

Funding

Pancreatic Cancer Action Network (PanCAN) Translational Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aatur D. Singhi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., McGrath, K. & Singhi, A.D. Novel Biomarkers for Pancreatic Cysts. Dig Dis Sci 62, 1796–1807 (2017). https://doi.org/10.1007/s10620-017-4491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4491-4

Keywords

Navigation