Skip to main content
Log in

Deposition of Nanostructurated Zr x La 1 x O y Thin Films on P-type Si(100) Substrate by the Sol-Gel Route

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The paper focuses on the electrical and structural characterization of nanostructurated ZrxLa1−xOy (ZLx) thin films in Zr atomic fractions in the range of x = 5 to 50%. High-k ZLx thin films were prepared on a Si(100) substrate using the sol-gel method. The influence of the annealing temperature in the presence of uniform oxygen flow (8 cm3/sec) on the insulator thickness was examined. It is found that the oxide growth versus time has parabolic behavior. The structure and morphology of the ZLx thin films were evaluated by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques. Furthermore, material properties are investigated by x-ray photoelectron spectroscopy (XPS) analysis. The current density-voltage (J-V) and capacitance-voltage (C-V) characteristics are determined for Al/ZLx/Si devices. It is found that dielectric properties are sensitive to annealing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quinsaat JEQ, Nüesch FA, Hofmann H, Opris DM (2013) RSC Adv 3:6971

    Article  Google Scholar 

  2. Ramprasad R, Shi N (2005) Phys Rev B 72:052107

    Article  Google Scholar 

  3. Graca MPF, Silva CC, Costa LC, Valente MA (2010) Int J Nanoelectron Mater 3:99

    Google Scholar 

  4. Choi JH, Mao Y, Chang JP (2011) Mater Sci Eng R 72:97

    Article  Google Scholar 

  5. Fang Q, Zhang JY, Wang ZM, Wu JX, O’Sullivan BJ, Hurley PK, Leedham TL, Davies H, Audier MA, Jimenez C, Senateur JP, Boyd IW (2003) Thin Solid Films 427:391

    Article  CAS  Google Scholar 

  6. Chang JP, Lin YS (2001) Appl Phys Lett 79:3666

    Article  CAS  Google Scholar 

  7. Matheswarana P, Sathyamoorthy R, Saravanakumar R, Velumani S (2010) Mater Sci Eng, B 174:269

    Article  Google Scholar 

  8. Chang JP, Lin YS (2001) J Appl Phys 90:2964

    Article  CAS  Google Scholar 

  9. Wu X, Migas DB, Li X, Bosman M, Raghavan N, Borisenk VE, Pey KL (2010) Appl Phys Lett 96:172901

    Article  Google Scholar 

  10. Kidd T, O’Shea A, Boyle K, Wallace J, Strauss L (2011) Nanoscale Res Lett 6:294

    Article  Google Scholar 

  11. Balamurugan A, Kannan S, Rajeswari S (2003) Mate Lett 57:4202

    Article  CAS  Google Scholar 

  12. Kuei PY, Chou JD, Huang CT, Ko HH, Su SC (2011) J of Crystal Growth 314:81

    Article  CAS  Google Scholar 

  13. Jeonga SH, Baea IS, Shina YS, Leea SB, Kwakb HT, Booa JH (2005) Thin Solid Films 475:354

    Article  Google Scholar 

  14. Shimizu H, Asayama K, Kawai N, Nishide T (2004) Jpn J Appl Phys 43:6992

    Article  CAS  Google Scholar 

  15. Li MF, Zhu CX, Shen CY, Xiong FF, Yuan P, Yeo YC, Chin A, Kwong DL, Wang SH, Du AY, Samudra G (2006) ECS Transactions 1:717

    Article  CAS  Google Scholar 

  16. Yu XF, Zhu CX, Li MF, Chin A, Du AY, Wang WD, Kwong DL (2004) Appl Phys Lett 85:2893

    Article  CAS  Google Scholar 

  17. Zhang MH, Rhee SJ, Kang CY, Choi CH, Akbar MS, Krishnan SA, Lee T, Ok IJ, Zhu F, Kim HS, Lee JC (2005) Appl Phys Lett 87:232901

    Article  Google Scholar 

  18. Yamamoto Y, Kita K, Kyuno K, Toriumi A (2006) Appl Phys Lett 89:032903

    Article  Google Scholar 

  19. Zhao C, Witters T, Brijs B, Bender H, Richard O, Caymax M, Heeg T, Schubert J, Afanas’ev V, Stesmans A, Schlom DG (2005) Appl Phys Lett 86:132903

    Article  Google Scholar 

  20. Rauwel E, Doubourdieu C, Holländer B, Rochat N, Ducroquet F, Rossell MD, Van Tendeloo G, Pellissier B (2006) Appl Phys Lett 89:012902

    Article  Google Scholar 

  21. Sathyamurthy S, Paranthaman M, Zhai HY, Christen HM, Martin PM, Goyal A (2002) J Mater Res 17:2181

    Article  CAS  Google Scholar 

  22. Knoth K, Huhne R, Oswald S, Schultz L, Holzapfel B (2007) Acta Materialia 55:517

    Article  CAS  Google Scholar 

  23. Bobzin K, Lugscheider E, Bagcivan N (2006) High Temp Mater Processes 10:103

    Article  CAS  Google Scholar 

  24. Seo JW, Fompeyrine J, Guiller A, Norga G, Marchiori C, Siegwart H, Locquet JP (2003) Appl Phys Lett 83:5211

    Article  CAS  Google Scholar 

  25. Gaskell M, Jones AC, Chalker PR, Werner M, Aspinall HC, Taylor S, Taechakumput P, Heys PN (2007) Chem Vap Deposition 13:684

    Article  CAS  Google Scholar 

  26. Jauncey GEM, Pennell F (1933) Phys Rev B 43:505

    Article  CAS  Google Scholar 

  27. Dimitrijev S, Barry Harrison H, Sweatman D (1996) IEEE TRANSA ON ELEC DEVI 43:267

    Article  CAS  Google Scholar 

  28. SUPREM-3 TMA (1993) Technology Modeling Associates 1:2

  29. Wang MT, Deng SY, Wang TH, Cheng BYY, Lee JYM (2005) J of The Electrochemi Soci 152:G542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Gholipur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipur, R., Bahari, A. & Ebrahimzadeh, M. Deposition of Nanostructurated Zr x La 1 x O y Thin Films on P-type Si(100) Substrate by the Sol-Gel Route. Silicon 9, 173–181 (2017). https://doi.org/10.1007/s12633-015-9365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9365-9

Keywords

Navigation