Skip to main content
Log in

Transgression Field Theory at the Interface of Topological Insulators

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Topological phases of matter can be classified by using Clifford algebras through Bott periodicity. We consider effective topological field theories of quantum Hall systems and topological insulators that are Chern–Simons and BF field theories. The edge states of these systems are related to the gauge invariance of the effective actions. For the edge states at the interface of two topological insulators, transgression field theory is proposed as a gauge invariant effective action. Transgression actions of Chern–Simons theories for (2+1)D and (4+1)D and BF theories for (3+1)D are constructed. By using transgression actions, the edge states are written in terms of the bulk connections of effective Chern–Simons and BF theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernevig, B.A., Hughes, T.L., Zhang, S.C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  ADS  Google Scholar 

  2. Bernevig, B.A., Chern, C.H., Hu, J.P., Toumbas, N., Zhang, S.C.: Effective field theory description of the higher dimensional quantum Hall liquid. Ann. Phys. 300, 185–207 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bertlmann, R.: Anomalies in Quantum Field Theory. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  4. Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant formalism for Chern-Simons gravity. J. Phys. A Math. Theor. 36, 2589 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Borowiec, A., Fatibene, L., Ferraris, M., Francaviglia, M.: Covariant Lagrangian formulation of Chern-Simons and BF theories. Int. J. Geom. Methods Mod. Phys. 3, 755–774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, G.Y., Moore, J.E.: Topological BF field theory description of topological insulators. Ann. Phys. 326, 1515–1535 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fradkin, E.: Field Theories of Condensed Matter Physics, 2nd edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  8. Hasan, M.Z., Kane, C.L.: Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  9. Huerta, L., Zanelli, J.: Optical properties of a \(\theta \) vacuum. Phys. Rev. D 85, 085024 (2012)

    Article  ADS  Google Scholar 

  10. Izaurieta, F., Rodriguez, E., Salgado, P.: On transgression forms and Chern–Simons (super)gravity (2005). arXiv:hep-th/0512014

  11. Kane, C.L., Mele, E.J.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  12. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lawson, B.H., Michelsohn, M.L.: Spin geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  14. Moore, J.E.: The birth of topological insulators. Nature 464, 194–198 (2010)

    Article  ADS  Google Scholar 

  15. Mora, P., Olea, R., Troncoso, R., Zanelli, J.: Transgression forms and extensions of Chern-Simons gauge theories. J. High Energy Phys. 0602, 067 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. Taylor Francis, London (2003)

    MATH  Google Scholar 

  17. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  18. Qi, X.L., Hughes, T.L., Zhang, S.C.: Topological field theory of time reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)

    Article  ADS  Google Scholar 

  19. Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  20. Stone, M., Chiu, C.K., Roy, A.: Symmetries, dimensions and topological insulators: the mechanism behind the face of the Bott clock. J. Phys. A Math. Theor. 44, 0450001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two dimensional perodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  22. Wang, Z., Qi, X.L., Zhang, S.C.: Equivalent topological invariants of topological insulators. New J. Phys. 12, 065007 (2010)

    Article  ADS  Google Scholar 

  23. Wen, X.G.: Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711–1762 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wen, X.G.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995)

    Article  ADS  Google Scholar 

  25. Willison, S., Zanelli, J.: Chern–Simons foam (2008). arXiv:0810.3041

  26. Zhang, S.C., Hu, J.P.: A four dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001)

    Article  ADS  Google Scholar 

  27. Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective field theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82–85 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Ertem.

Additional information

Communicated by Rafał Abłamowicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Açık, Ö., Ertem, Ü. Transgression Field Theory at the Interface of Topological Insulators. Adv. Appl. Clifford Algebras 27, 2235–2245 (2017). https://doi.org/10.1007/s00006-017-0761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0761-7

Keywords

Mathematics Subject Classification

Navigation