Skip to main content
Log in

Adsorption modes of 1,3-thiazol-2-amine on the TiO2 (001) and (101) anatase surfaces

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) method, considering periodic boundary conditions (PBC) and full geometry optimization, was used to study the adsorption of different tautomers of 1,3-thiazol-2-amine on TiO2 (101) and (001) anatase surfaces. The optimized structures of the tautomers on the surface and their corresponding adsorption energies (E ad) were determined. The tautomers were adsorbed on the surfaces mostly through the interaction between Ti atom on the surface and the lone electron pairs of their N, N3, and S atoms. The adsorption of tautomers through their N sites on the surfaces was more favorable compared to N3 and S sites. The adsorption of tautomers on (001) surface was more favorable than their adsorption on (101) surface. The adsorption of 1,3-thiazol-2-amine decreased the band gap of TiO2 which is favorable for solar cells. Comparison of the calculated total density of states (TDOS) of TiO2 + adsorbate with that of bare TiO2 showed the presence of the extra peaks in first band gap of TiO2 in the valence region which increased the conductivity of the surface. Also, for the adsorption of some tautomers, extra states were seen in the second band gap of TiO2 between the valence and conduction band of TiO2. The adsorption of the tautomers shifted the TDOS of the surface to the lower energy compared to the bare surface and caused a negative shift in the TiO2 Fermi level. The effect of solvent on the adsorption of the tautomers on the surfaces was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park H, Oub H-H, Kang U, Choi J, Hoffmann MR (2016) Catal Today 266:153–159

  2. Bellardita M, García-López EI, Marcì Megna GB, Pomillaa FR, Palmisanoa L (2015) RSC Adv 5:59037

    Article  CAS  Google Scholar 

  3. Goh GKL, Chan KYS, Huang GS, Tay QL (2011) Australian J Chem 64:1235

    Article  Google Scholar 

  4. Li Q, Jiang Z, Qin J, Li Z (2012) Australian J Chem 65:1203

    Article  CAS  Google Scholar 

  5. Huang F, Cheng YB, Caruso RA (2012) Australian J Chem 64:820

    Google Scholar 

  6. Tricot F, Vocanson F, Chaussy D, Beneventi D, Party M, Destouches N (2015) RSC Adv 5:84560

    Article  CAS  Google Scholar 

  7. Karunagaran B, Uthirakumar P, Chung SJ, Velumani S, Suh EK (2007) Mater Charact 58:680

    Article  CAS  Google Scholar 

  8. Zhang Z, Zhou Y, Zhang S, Xu C (2006) Energy Fuel 20:2293

    Article  CAS  Google Scholar 

  9. Schacht P, Hernández G, Cedeño L, Mendoza JH, Ramírez S, García L, Ancheyta J (2003) Energy Fuel 17:81

    Article  CAS  Google Scholar 

  10. Liu Z, Zhang L, Jiang J, Bian C, Zhang Z, Gao Z (2013) Adv Chem Eng Sci 3:36

    Article  Google Scholar 

  11. Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) ACS Cata 5:6696

    Article  CAS  Google Scholar 

  12. Nolan M (2011) Chem Commun 47:8617

    Article  CAS  Google Scholar 

  13. Galhenage RP, Yan H, Tenney SA, Park N, Henkelman G, Albrecht P, Mullins DR, Chen DA (2013) J Phys Chem C 117:7191

    Article  CAS  Google Scholar 

  14. Augustynski J (1993) Electrochim Acta 38:43

    Article  CAS  Google Scholar 

  15. Zhang H, Banfield JF (2002) Chem Mater 14:4145

    Article  CAS  Google Scholar 

  16. Barnard AS, Zapol P (2004) Phys Rev B 70:235403

    Article  Google Scholar 

  17. Barnard SA, Zapol P, Curtiss LA (2005) Sur Sci 582:173

    Article  CAS  Google Scholar 

  18. Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P (2004) J Cata 222:152

    Article  CAS  Google Scholar 

  19. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409

    Article  Google Scholar 

  20. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Phys Rev Lett 81:2954

    Article  CAS  Google Scholar 

  21. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Cata 203:82

    Article  CAS  Google Scholar 

  22. Bredow T, Jug K (1995) J Phy Chem 99:285

    Article  CAS  Google Scholar 

  23. Gong XQ, Selloni A (2005) J Phys Chem B 109:19560

    Article  CAS  Google Scholar 

  24. Li W, Liang R, Hu A, Huang Z, Zhou YN (2014) RSC Adv 4:36959

    Article  CAS  Google Scholar 

  25. Gratzel M (1991) Comm Inorg Chem 12:93

    Article  Google Scholar 

  26. Boschloo G, Fitzmaurice D (1999) J Phys Chem B 103:2228

    Article  CAS  Google Scholar 

  27. Gratzel M (2004) J Photochem Photobiol A Chem 164:3

    Article  CAS  Google Scholar 

  28. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) J Am Ceram Soc 80:3157

    Article  CAS  Google Scholar 

  29. Nakada S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S (2002) J Phys Chem B 106:10004

    Article  Google Scholar 

  30. Kim H, Auyeung RCY, Ollinger M, Kushto GP, Kafafi ZH, Pique A (2006) Appl Phys A Mater Sci Process 83:73

    Article  CAS  Google Scholar 

  31. Lavrencic Stangar U, Orel B, Neumann B (2003) Sol–Gel Sci Technol 26:1113

    Article  Google Scholar 

  32. Brooks MR, Guo Z (2006) J Phys Chem B 110:15932

    Article  Google Scholar 

  33. Guo J, Watanabe S, Janik MJ, Ma X, Song C (2010) Catal Today 149:218

    Article  CAS  Google Scholar 

  34. Tian FH, Wang X, Zhao W, Zhao L, Chu T, Yu S (2013) Sur Sci 616:76

    Article  CAS  Google Scholar 

  35. Nilsing M, Persson P, Ojamae L (2005) Chem Phys Lett 415:375

    Article  CAS  Google Scholar 

  36. Bermudez VM (2010) Surf Sci 604:706

    Article  CAS  Google Scholar 

  37. Zhang X, Chen Q, Hu W, Zhang J (2013) Appl Sur Sci 286:47

    Article  CAS  Google Scholar 

  38. Shukri G, Kasai H (2014) Surf Sci 619:59

    Article  CAS  Google Scholar 

  39. Xu Y, Chen WK, Liu SH, Cao MJ, Li JQ (2007) Chem Phys 331:275

    Article  CAS  Google Scholar 

  40. Najafi Chermahini A, Hosseinzadeh B, Beni AS, Teimouri A, Moradi M (2014) J Mol Model 20:2086

    Article  Google Scholar 

  41. Najafi Chermahini A, Farrokhpour H, Zeinodini A (2016) J Mol Struc 1121:203

    Article  Google Scholar 

  42. Eicher T, Hauptmann S (2003) The chemistry of heterocycles. ISBN 3-527, 30720

  43. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  44. Kim E, Weck PF, Berber S, Tomanek D (2008) Phys Rev B 78:113404

    Article  Google Scholar 

  45. Benedek NA, Snook IK, Latham K, Yarovsky I (2005) Chem Phys 122:144102

    CAS  Google Scholar 

  46. Inada Y, Orita H (2008) J Comput Chem 29:225

    Article  CAS  Google Scholar 

  47. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  48. Klamt A, Schüürmann G (1993) J Chem Soc (Perkin Trans2) 2:799

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Isfahan University of Technology (IUT) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Farrokhpour or Alireza Najafi Chermahini.

Electronic supplementary material

ESM 1

(DOCX 8440 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhpour, H., Vazifeh, M. & Najafi Chermahini, A. Adsorption modes of 1,3-thiazol-2-amine on the TiO2 (001) and (101) anatase surfaces. Struct Chem 28, 1151–1162 (2017). https://doi.org/10.1007/s11224-017-0920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0920-4

Keywords

Navigation