Skip to main content

Advertisement

Log in

Hierarchical macroporous–mesoporous γ-alumina monolithic green bodies with high strength

  • Macroporous Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical macroporous–mesoporous alumina (HMMA) and hierarchical mesoporous alumina (HMA) monolithic green bodies were fabricated by cold isostatic pressing (CIP) of mesoporous alumina (MA) powder, which was prepared by a quick, facile and very pure synthesis route that involved exploitation of the naturally self-driven aluminum nitride powder hydrolysis. The hierarchically self-assembled, nanocrystalline, yet micron-sized MA powder exhibited a controlled porosity, a fine crystallite size, a relatively large surface area and large pore volumes. The textural characteristics of the MA powder were analyzed, while the effect of the consolidation pressure on the pore size evolution, mechanical and permeability properties of the consolidated HMMA and HMA monoliths were investigated. At the lowest CIP pressures, the HMMA monoliths possessed favorable permeability characteristics with Darcian permeability constants up to 2 × 10−15 m2, also exhibiting a low thermal conductivity (≥0.185 W/mK), sufficient flexural strength (≥6 MPa) with an accessible porosity of ≤65%, a pore volume of ≤0.69 cm3/g and a macropore opening diameter of ≤370 nm at a constant mesopore opening diameter of about 4.5 nm. Increasing the CIP pressure resulted in the shrinkage of the macropores and a consequent suppression of the permeability characteristics; however, the flexural strength of the HMA monolith CIPed at 800 MPa increased to 51 MPa, which is the highest reported strength for a dry-pressed, binderless ceramic green body with an accessible porosity of 42% and a theoretical density of 44.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Euzen P, Raybaud P, Krokidis X et al (2002) Alumina. In: Schüth F, Sing K, Weitkamp J (eds) Handbook of porous solids. Wiley-VCH, Weinheim, pp 1591–1677

    Chapter  Google Scholar 

  2. Webster TJ, Hellenmeyer EL, Price RL (2005) Increased osteoblast functions on theta + delta nanofiber alumina. Biomaterials 26:953–960. doi:10.1016/j.biomaterials.2004.03.040

    Article  Google Scholar 

  3. Maquieira Á, Brun EM, Garcés-García M, Puchades R (2012) Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem 84:9340–9348. doi:10.1021/ac3020998

    Google Scholar 

  4. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012

    Article  Google Scholar 

  5. Iler R (1961) Fibrillar colloidal boehmite; progressive conversion to gamma, theta, and alpha aluminas. J Am Ceram Soc 44:618–624

    Article  Google Scholar 

  6. Deng W, Toepke MW, Shanks BH (2003) Surfactant-assisted synthesis of alumina with hierarchical nanopores. Adv Funct Mater 13:61–65. doi:10.1002/adfm.200390007

    Article  Google Scholar 

  7. Ren TZ, Yuan ZY, Su BL (2004) Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and γ-Al2O3. Langmuir 20:1531–1534. doi:10.1021/la0361767

    Article  Google Scholar 

  8. Zhang K, Fu Z, Nakayama T, Niihara K (2012) Structural evolution of hierarchically macro/mesoporous Al2O3 monoliths under heat-treatment. Microporous Mesoporous Mater 153:41–46. doi:10.1016/j.micromeso.2011.12.014

    Article  Google Scholar 

  9. Li L-L, Duan W-T, Yuan Q et al (2009) Hierarchical γ-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls. Chem Commun 41:6174–6176. doi:10.1039/b912495k

    Article  Google Scholar 

  10. Tokudome Y, Fujita K, Nakanishi K et al (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater 13:3393–3398. doi:10.1021/cm063051p

    Article  Google Scholar 

  11. Passos AR, Pulcinelli SH, Briois V, Santilli CV (2016) High surface area hierarchical porous Al 2 O 3 prepared by the integration of sol–gel transition and phase separation. RSC Adv 6:57217–57226. doi:10.1039/C6RA11477F

    Article  Google Scholar 

  12. Xu G, Li J, Cui H et al (2015) Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent. Ceram Int 41:7042–7047. doi:10.1016/j.ceramint.2015.02.007

    Article  Google Scholar 

  13. Bian S-W, Zhang Y-L, Li H-L et al (2010) γ-Alumina with hierarchically ordered mesopore/macropore from dual templates. Microporous Mesoporous Mater 131:289–293. doi:10.1016/j.micromeso.2010.01.004

    Article  Google Scholar 

  14. Parlett CMA, Wilson K, Lee AF (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev Chem Soc Rev 42:3876–3893. doi:10.1039/c2cs35378d

    Article  Google Scholar 

  15. Henry M, Jolivet JP, Livage J (1992) Aqueous chemistry of metal cations: hydrolysis, condensation and complexation. In: Reisfeld R, Jorgensen CK (eds) Chemistry, spectroscopy and applications of sol-gel glasses, Structure and bonding, vol 77. Springer-Verlag, Berlin, Heidelberg, pp 153–206

    Chapter  Google Scholar 

  16. Kocjan A, Krnel K, Kosmač T (2008) The influence of temperature and time on the AlN powder hydrolysis reaction products. J Eur Ceram Soc 28:1003–1008

    Article  Google Scholar 

  17. Kocjan A, Dakskobler A, KosmacÌŒ T (2012) Evolution of aluminum hydroxides in diluted aqueous aluminum nitride powder suspensions. Cryst Growth Des 12:1299–1307

    Article  Google Scholar 

  18. Kocjan A, Dakskobler A, Krnel K, Kosmač T (2011) The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions. J Eur Ceram Soc 31:815–823. doi:10.1016/j.jeurceramsoc.2010.12.009

    Article  Google Scholar 

  19. Dakskobler A, Kocjan A, Kosmač T (2011) Porous alumina ceramics prepared by the hydrolysis-assisted solidification method. J Am Ceram Soc 94:1374–1379. doi:10.1111/j.1551-2916.2010.04258.x

    Article  Google Scholar 

  20. Kocjan A, Ambrožič M, Kosmač T (2012) Stereometric analysis of nanostructured boehmite coatings synthesized by aluminum nitride powder hydrolysis. Ceram Int 38:4853–4859. doi:10.1016/j.ceramint.2012.02.075

    Article  Google Scholar 

  21. Kocjan A, Dakskobler A, Kosmac T (2011) Superhydrophobic nanostructured boehmite coatings prepared by AlN powder hydrolysis. Int J Appl Ceram Technol 8:848–853. doi:10.1111/j.1744-7402.2010.02516.x

    Article  Google Scholar 

  22. Jevnikar P, Krnel K, Kocjan A et al (2010) The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics. Dent Mater 26:688–696. doi:10.1016/j.dental.2010.03.013

    Article  Google Scholar 

  23. Wicklein B, Kocjan A, Salazar-Alvarez G et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283. doi:10.1038/nnano.2014.248

    Article  Google Scholar 

  24. Zhang S, Kocjan A, Lehmann F et al (2010) Influence of contamination on resin bond strength to nano-structured alumina-coated zirconia ceramic. Eur J Oral Sci 118:396–403. doi:10.1111/j.1600-0722.2010.00752.x

    Article  Google Scholar 

  25. Krokidis X, Raybaud P (2001) Theoretical study of the dehydration process of boehmite to γ-alumina. J Phys Chem B 105:5121–5130

    Article  Google Scholar 

  26. Okada K, Nagashima T, Kameshima Y, Yasumori A (2002) Effect of crystallite size on the thermal phase change and porous properties of boehmite. J Colloid Interface Sci 248:111–115. doi:10.1006/jcis.2001.8183

    Article  Google Scholar 

  27. Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials, second. Wiley, New York

    Google Scholar 

  28. Logar M, Kocjan A, Dakskobler A (2012) Photocatalytic activity of nanostructured γ-Al2O3/TiO2 composite powder formed via a polyelectrolyte-multilayer-assisted sol–gel reaction. Mater Res Bull 47:12–17. doi:10.1016/j.materresbull.2011.10.017

    Article  Google Scholar 

  29. Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:393–395. doi:10.1038/46509

    Article  Google Scholar 

  30. Cai W, Yu J, Gu S, Jaroniec M (2010) Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres. Cryst Growth Des 10:3977–3982. doi:10.1021/cg100544w

    Article  Google Scholar 

  31. Liu Y, Ma D, Han X et al (2008) Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Mater Lett 62:1297–1301. doi:10.1016/j.matlet.2007.08.067

    Article  Google Scholar 

  32. Zhang L, Zhu Y-J (2008) Microwave-assisted solvothermal synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to γ-Al2O3 with similar morphologies. J Phys Chem C 112:16764–16768. doi:10.1021/jp805751t

    Article  Google Scholar 

  33. Bowen P, Carry C, Luxembourg D, Hofmann H (2005) Colloidal processing and sintering of nanosized transition aluminas. Powder Technol 157:100–107. doi:10.1016/j.powtec.2005.05.015

    Article  Google Scholar 

  34. Sumirat I, Ando Y, Shimamura S (2006) Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J Porous Mater 13:439–443. doi:10.1007/s10934-006-8043-0

    Article  Google Scholar 

  35. Yang H-S, Bai G-R, Thompson LJ, Eastman JA (2002) Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia. Acta Mater 50:2309–2317. doi:10.1016/S1359-6454(02)00057-5

    Article  Google Scholar 

  36. Yu B, Lange F (2001) Colloidal isopressing: a new shape-forming method. Adv Mater 93106:276–280

    Article  Google Scholar 

  37. Romdhane M, Chartier T, Baklouti S et al (2007) A new processing aid for dry-pressing: a copolymer acting as dispersant and binder. J Eur Ceram Soc 27:2687–2695. doi:10.1016/j.jeurceramsoc.2006.11.076

    Article  Google Scholar 

  38. Zysset PK, Guo XE, Hoffler CE et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae quantified by nanoindentation. J Biomech 32:1005–1012

    Article  Google Scholar 

  39. Burghard Z, Leineweber A, Van Aken PA et al (2013) Hydrogen-bond reinforced vanadia nanofiber paper of high stiffness. Adv Mater 25:2468–2473. doi:10.1002/adma.201300135

    Article  Google Scholar 

  40. Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57:115–131. doi:10.1179/1743280411Y.0000000006

    Article  Google Scholar 

  41. Konegger T, Patidar R, Bordia RK (2015) A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors. J Eur Ceram Soc 35:2679–2683. doi:10.1016/j.jeurceramsoc.2015.03.009

    Article  Google Scholar 

Download references

Acknowledgements

Slovenian Research Agency is acknowledged for funding the research program Engineering and Bio-ceramics (P2-0087). The authors are grateful to Darko Eterovič for the specimen preparation and mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andraž Kocjan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocjan, A., Konegger, T. & Dakskobler, A. Hierarchical macroporous–mesoporous γ-alumina monolithic green bodies with high strength. J Mater Sci 52, 11168–11178 (2017). https://doi.org/10.1007/s10853-017-0894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0894-z

Keywords

Navigation