Skip to main content
Log in

Mycoceros antennatissimus gen. et sp. nov.: a mitosporic fungus capturing pollen grains

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Mycoceros antennatissimus gen. et sp. nov. is described and illustrated from pollen grains deposited on the bark of Elaeagnus angustifolia and Platanus × acerifolia in Hungary. This fungus is shown to capture pollen grains by its three-dimensional shape. It clearly shows seasonality and appears to be rare. The following factors determine its ecological niche: (1) the availability of fresh Pinaceae pollen grains deposited from the air on the bark of a nearby standing angiosperm tree with (2) water-retaining spongious bark, and (3) rainy weather. Conidia are mainly dispersed by stemflow rainwater, while they hardly become airborne. Direct polymerase chain reaction (PCR) from single conidia made it possible to perform molecular phylogenetic investigation in order to clarify its taxonomic relationship within the Ascomycota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Kasun M. Thambugala, Dinushani A. Daranagama, … Kevin D. Hyde

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bärlocher F, Charette N, Letourneau A, Nikolcheva LG, Sridhar KR (2010) Sequencing DNA extracted from single conidia of aquatic hyphomycetes. Fungal Ecol 3:115–121

    Article  Google Scholar 

  • Bertini L, Amicucci A, Agostini D, Polidori E, Potenza L, Guidi C, Stocchi V (1999) A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol Lett 173:239–245

    Article  CAS  PubMed  Google Scholar 

  • Cannon PF, Sutton BC (2004) Microfungi on wood and plant debris. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, New York, pp 217–239

    Chapter  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi Y-W, Hyde KD, Ho WH (1999) Single spore isolation of fungi. Fungal Divers 3:29–38

    Google Scholar 

  • Chou MC, Preece TF (1968) The effect of pollen grains on infections caused by Botrytis cinerea Fr. Ann Appl Biol 62:11–22

    Article  CAS  PubMed  Google Scholar 

  • Di-Giovanni F, Kevan PG (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Can J For Res 21:1155–1170

    Article  Google Scholar 

  • Drechsler C (1961) Some clampless Hyphomycetes predacious on nematodes and rhizopods. Sydowia 15:9–25

    Google Scholar 

  • Erdtman H (1952) Phenolic and other extraneous components of coniferous heartwoods; their relation to taxonomy. In: Wise LE, Jahn EC (eds) Wood chemistry, vol I. Reinhold, New York, pp 661–688

    Google Scholar 

  • Fokkema NJ (1968) The influence of pollen on the development of Cladosporium herbarum in the phyllosphere of rye. Neth J Plant Pathol 74:159–165

    Article  Google Scholar 

  • Fokkema NJ (1971a) Influence of pollen on saprophytic and pathogenic fungi on rye leaves. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic Press, New York, pp 277–282

    Google Scholar 

  • Fokkema NJ (1971b) The effect of pollen in the phyllosphere of rye on colonization by saprophytic fungi and on infection by Helminthosporium sativum and other leaf pathogens. Neth J Plant Pathol 77(Suppl 1):1–60

    Article  Google Scholar 

  • Galili T (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31:3718–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Goh T-K (1999) Single-spore isolation using a hand-made glass needle. Fungal Divers 2:47–63

    Google Scholar 

  • Goldstein S (1960) Degradation of pollen by phycomycetes. Ecology 41:543–545

    Article  Google Scholar 

  • Gunasekera SA, Webster J (1983) Inhibitors of aquatic and aero-aquatic hyphomycetes in pine and oak wood. Trans Br Mycol Soc 80:121–125

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Huang HC, Kokko EG, Erickson RS (1999) Infection of alfalfa pollen by Botrytis cinerea. Bot Bull Acad Sin 40:101–106

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hutchison LJ, Barron GL (1997) Parasitism of pollen as a nutritional source for lignicolous Basidiomycota and other fungi. Mycol Res 101:191–194

    Article  Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and water-borne hyphomycetes (Fungi Imperfecti) with notes on their biology. Freshwater Biol Assoc Sci Publ 30:1–96

    Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang K (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Magyar D (2008) The tree bark: a natural spore trap. Asp Appl Biol 89:7–16

    Google Scholar 

  • Magyar D, Merényi Z, Bratek Z, Baral H-O, Marson G (2016a) Lecophagus vermicola sp. nov., a nematophagous hyphomycete with an unusual hunting strategy. Mycol Progr 15:1137–1144

    Article  Google Scholar 

  • Magyar D, Vass M, Li DW (2016b) Dispersal strategies of microfungi. In: Li DW (ed) Biology of microfungi. Springer International Publishing, pp 315–371

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, 14 November 2010, pp 1–8

  • Nawawi A (1985) Some interesting hyphomycetes from water. Mycotaxon 24:217–226

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Available online at: https://github.com/nylander/MrModeltest2. Accessed 2012

  • Olivier DL (1978) Retiarius gen. nov.: phyllosphere fungi which capture wind-borne pollen grains. Trans Br Mycol Soc 71:193–201

    Article  Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8:e65576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Home page at: https://www.R-project.org/

  • Rambaut A. (2009) FigTree, ver. 1.3.1. Available online at: http://tree.bio.ed.ac.uk/software/figtree/

  • Révay Á, Gönczöl J (2011) Canopy fungi (“terrestrial aquatic hyphomycetes”) from twigs of living evergreen and deciduous trees in Hungary. Nova Hedwigia 92:303–316

    Article  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues Marques JP, Amorim L, Bellato Spósito M, Marin D, Appezzato-da-Glória B (2013) Infection of citrus pollen grains by Colletotrichum acutatum. Eur J Plant Pathol 136:35–40

    Article  Google Scholar 

  • Scheffer TC, Cowling EB (1966) Natural resistance of wood to microbial deterioration. Ann Rev Phytopathol 4:147–170

    Article  CAS  Google Scholar 

  • Sokolski S, Piché Y, Laitung B, Bérubé JA (2006) Streams in Quebec boreal and mixed-wood forests reveal a new aquatic hyphomycete species, Dwayaangam colodena sp. nov. Mycologia 98:628–636

    Article  CAS  PubMed  Google Scholar 

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stark N (1972) Nutrient cycling pathways and litter fungi. Bioscience 22:355–360

    Article  CAS  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren RC (1972) The effect of pollen on the fungal leaf microflora of Beta vulgaris L. and on infection of leaves by Phoma betae. Neth J Plant Pathol 78:89–98

    Article  Google Scholar 

  • Wurzbacher C, Rösel S, Rychła A, Grossart H-P (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9:e94643

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gyula Dura and Anna Páldy, National Institute of Environmental Health for the financial support to complete the DNA analysis, Ágnes Révay, Hungarian Natural History Museum, Budapest for her valuable suggestions, Hans-Otto Baral, Tübingen, Germany for his valuable corrections and Gáti Zsófia for the technical assistance in the molecular methods. PK and LK were supported by grant GINOP-2.3.3-15-2016-00006 (Széchenyi 2020 Programme). ZM was supported by NTP-NFTÖ-16-0216 (National Talent Program of the Ministry of Human Capacities (EMMI), Human Capacities Grant Management Office (EMET) and GINOP- 2.1.1-15- 2015-00115 (Széchenyi 2020 Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Magyar.

Additional information

Section Editor: Marc Stadler

This article is part of the “Special Issue on ascomycete systematics in honour of Richard P. Korf who died in August 2016”.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary materials 1

Results of BLAST search. (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magyar, D., Merényi, Z., Udvardy, O. et al. Mycoceros antennatissimus gen. et sp. nov.: a mitosporic fungus capturing pollen grains. Mycol Progress 17, 33–43 (2018). https://doi.org/10.1007/s11557-017-1275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1275-3

Keywords

Navigation