Skip to main content

Advertisement

Log in

Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a commonly encountered and highly successful organism in marine ecosystems. It is a fast-growing, extremely versatile copiotroph that is active over a very broad range of conditions. It frequently occurs suspended in the water column (often attached to particles or zooplankton), and is a proficient colonist of submerged surfaces. This organism is an important pathogen of animals ranging from microcrustaceans to humans and is a causative agent of seafood-associated food poisoning. This review examines specific ecological adaptations of V. parahaemolyticus, including its broad tolerances to temperature and salinity, its utilization of a wide variety of organic carbon and energy sources, and its pervasive colonization of suspended and stationary materials that contribute to its success and ubiquity in temperate and tropical estuarine ecosystems. Several virulence-related features are examined, in particular the thermostable direct hemolysin (TDH), the TDH-related hemolysin (TRH), and the type 3 secretion system, and the possible importance of these features in V. parahaemolyticus pathogenicity is explored. The impact of new and much more effective PCR primers on V. parahaemolyticus detection and our views of virulent strain abundance are also described. It is clear that strains carrying the canonical virulence genes are far more common than previously thought, which opens questions regarding the role of these genes in pathogenesis. It is also clear that virulence is an evolving feature of V. parahaemolyticus and that novel combinations of virulence factors can lead to emergent virulence in which a strain that is markedly more pathogenic evolves and propagates to produce an outbreak. The effects of global climate change on the frequency of epidemic disease, the geographic distribution of outbreaks, and the human impacts of V. parahaemolyticus are increasing and this review provides information on why this ubiquitous human pathogen has increased its footprint and its significance so dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alapide-Tendencia EV, Dureza LA (1997) Isolation of Vibrio spp. from Penaeus monodon (Fabricius) with red disease syndrome. Aquaculture 154:107–l14

    Article  Google Scholar 

  • Alcaide E, Amaro C, Todoli R, Oltra R (1999) Isolation and characterization of Vibrio parahaemolyticus causing infection in Iberian toothcarp Aphanius iberus. Dis Aquat Org 35:77–80

    Article  CAS  PubMed  Google Scholar 

  • Amon RNW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  CAS  Google Scholar 

  • Bagwell CE, Piceno YM, Ashburne-Lucas A, Lovell CR (1998) Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses. Appl Environ Microbiol 64:4276–4282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin C, McArthur JV, Tuckfield RC, Najarro M, Lindell AH, Gooch J, Stepanauskas R (2008) Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, U. S. A. J Food Prot 71:2552–2558

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang 3:73–77

    Article  Google Scholar 

  • Bauer A, Østensvik Ø, Florvåg M, Ørmen Ø, Rørvik LM (2006) Occurrence of Vibrio parahaemolyticus, V. cholerae, and V. vulnificus in Norwegian blue mussels (Mytilus edulis). Appl Environ Microbiol 72:3058–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bej AK, Patterson DP, Brasher CW, Vickery MCL, Jones DD, Kaysner CA (1999) Detection of total and hemolysin producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tlh, tdh and trh. J Microbiol Methods 36:215–225

    Article  CAS  PubMed  Google Scholar 

  • Bergholz PW, Bagwell CE, Lovell CR (2001) Physiological diversity of rhizoplane diazotrophs of the saltmeadow cordgrass, Spartina patens: implications for host specific ecotypes. Microb Ecol 42:466–473

    Article  CAS  PubMed  Google Scholar 

  • Bhoopong P, Palittapongarnpim P, Pomwised R, Kiatkittipong A, Kamruzzaman M, Nakaguchi Y, Nishibuchi M, Ishibashi M, Vuddhakul V (2007) Variability of properties of Vibrio parahaemolyticus strains isolated from individual patients. J Clin Microbiol 45:1544–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilung LM, Radu S, Bahaman AR, Rahim RA, Napis S, Ling MWCV, Tanil GB, Nishibuchi M (2005) Detection of Vibrio parahaemolyticus in cockle (Anadara granosa) by PCR. FEMS Microbiol Lett 252:85–88

    Article  CAS  PubMed  Google Scholar 

  • Blood E, Vernberg J (1992) Characterization of the physical, chemical and biological conditions and trends in three Carolina estuaries: 1970–1985, vol. II. South Carolina Sea Grant Consortium, Charleston, SC

    Google Scholar 

  • Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdette DL, Seemann J, Orth K (2009) Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham VE, Janes ME, Jakus LA, Supan J, DePaola A, Bell J (2009) Growth and survival differences of Vibrio vulnificus and Vibrio parahaemolyticus strains during cold storage. J Food Sci 74:M314–M318

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli D, Hasan NA, Huq A, Colwell RR (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 3:97. doi:10.3389/fcimb.2013.00097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Center for Disease Control and Prevention (CDC) (2005) Vibrio illnesses after Hurricane Katrina multiple states, August–September 2005. Morb Mortal Wkly Rep 54:928–931

    Google Scholar 

  • Chrzanowski TH, Zingmark R (1986) Passive filtering of microbial biomass by Spartina alterniflora. Estuar Coast Shelf Sci 22:545–557

    Article  Google Scholar 

  • Coulthurst SJ (2013) The type VI secretion system—a widespread and versatile cell targeting system. Res Microbiol 164:640–654

    Article  CAS  PubMed  Google Scholar 

  • Croci L, Suffredini E, Cozzi L, Toti L, Ottavini D, Pruzzo C, Serratore P, Fischetti R, Goffredo E, Loffredo G, Mioni R, the Vibrio parahaemolyticus Working Group (2007) Comparison of different biochemical and molecular methods for the identification of Vibrio parahaemolyticus. J Appl Microbiol 102:229–237

  • Dame RF (1989) The importance of Spartina alterniflora to Atlantic Coast estuaries. Crit Rev Aquat Sci 1:639–660

    Google Scholar 

  • Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Molec Biol Rev 80:91–138

    Article  Google Scholar 

  • Daniels NA, Ray B, Easton A, Marano N, Kahn E, McShan AL, Del Rosario L, Baldwin T, Kingsley MA, Puhr ND, Wells JG, Angulo FJ (2000) Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: a prevention quandary. J Am Med Assoc 284:1541–1545

    Article  CAS  Google Scholar 

  • DePaola A, Hopkins LH, Peeler JT, Wentz B, McPhearson RM (1990) Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters. Appl Environ Microbiol 56:2299–2302

    CAS  PubMed  PubMed Central  Google Scholar 

  • DePaola A, Kaysner CA, Bowers JC, Cook DW (2000) Environmental investigations of Vibrio parahaemolyticus in oysters following outbreaks in Washington, Texas, and New York (1997, 1998). Appl Environ Microbiol 66:4649–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePaola A, Nordstrom JL, Bowers JC, Wells JG, Cook DW (2003) Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl Environ Microbiol 69:1521–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza SM, Orth K (2015) Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 17:164–173

    Google Scholar 

  • Deter J, Lozach S, Véron A, Chollet J, Derrien A, Hervio-Heath D (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937

    Article  CAS  Google Scholar 

  • Dorsch M, Lane D, Stackebrandt E (1992) Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int J Syst Evol Microbiol 42:58–63

    CAS  Google Scholar 

  • Evans C, Brussaard CPD (2012) Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol Oceanogr 57:1826–1837

    Article  Google Scholar 

  • Food and Drug Administration (FDA) (2005) Vibrio parahaemolyticus risk assessment: quantitative risk assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oysters. URL: http://www.fda.gov.pallas2.tcl.sc.edu/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/ucm050421.htm

  • Frischkorn KR, Stojanovski A, Paranjpye R (2013) Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 15:1416–1427

    Article  CAS  PubMed  Google Scholar 

  • Froelich B, Ayrapetyan M, Oliver JD (2013) Integration of Vibrio vulnificus into marine aggregates and its subsequent uptake by Crassostrea virginica oysters. Appl Environ Microbiol 79:1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel MW, Matsui GY, Friedman R, Lovell CR (2014) Optimization of multilocus sequence analysis for identification of species in the genus Vibrio. Appl Environ Microbiol 80:5359–5365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamble MD, Lovell CR (2011) Infaunal burrows are enrichment zones for Vibrio parahaemolyticus. Appl Environ Microbiol 77:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia K, Torres R, Uribe P, Hernandez C, Rioseco ML, Romero J, Espejo RT (2009) Dynamics of clinical and environmental Vibrio parahaemolyticus strains during seafood-related summer diarrhea outbreaks in southern Chile. Appl Environ Microbiol 75:7482–7487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavilan RG, Zamudio ML, Martinez-Urtaza J (2013) Molecular epidemiology and genetic variation of pathogenic Vibrio parahaemolyticus in Peru. PLoS Negl Trop Dis 7(5):e2210. doi:10.1371/journal.pntd.0002210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennari M, Ghidini V, Carburlotto G, Lleo MM (2012) Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563–573

    Article  CAS  PubMed  Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  CAS  PubMed  Google Scholar 

  • Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Molec Microbiol 79:240–263

    Article  CAS  Google Scholar 

  • Gonzalez-Escalona N, Blackstone GM, DePaola A (2006) Characterization of a Vibrio alginolyticus strain, isolated from Alaskan oysters, carrying a hemolysin gene similar to the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus. Appl Environ Microbiol 72:7925–7929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park KS, Dryselius R, Akeda Y, Honda T, Iida T (2010) Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 5:e13365. doi:10.1371/journal.pone.0013365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grossart HP, Ploug H (2001) Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol Oceanogr 46:267–277

    Article  CAS  Google Scholar 

  • Gutierrez West CK, Klein SL, Lovell CR (2013) High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol 79:2247–2252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey RW, Lion LW, Young LY (1983) Transport and distribution of bacteria and diatoms in the aqueous surface microlayer of a salt marsh. Estuar Coast Shelf Sci 16:543–547

    Article  Google Scholar 

  • Hatai K, Yasumoto S, Yasunagac N (1981) Vibrio strains isolated from cultured Japanese horse mackerel (Trachurus japonicus). Fish Pathol 16:111–118

    Article  Google Scholar 

  • Hsieh JL, Fries JS, Noble RT (2007) Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl 17:S102–S109

    Article  Google Scholar 

  • Hsieh Y-C, Liang S-M, Tsai W-L, Chen Y-H, Liu T-Y, Liang C-M (2003) Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 71:3329–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SN, Greig DJ, Miller WA, Byrne BA, Gulland FMD, Harvey JT (2013) Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health. Microb Ecol 65:982–994

    Article  PubMed  Google Scholar 

  • Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hygum BH, Petersen JW, Søndergaard M (1997) Dissolved organic carbon released by zooplankton grazing activity—a high-quality substrate pool for bacteria. J Plankton Res 19:97–111

    Article  CAS  Google Scholar 

  • Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T (2008) Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 76:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Flowers AR, Noriea NF III, Zimmerman AM, Bowers JC, DePaola A, Grimes DJ (2010) Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol 76:7076–7084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea NF III, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 78:7249–7257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston MD, Brown MH (2002) An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. J Appl Microbiol 92:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Lüdeke CHM, Bowers JC, Garrett N, Fischer M, Parsons MB, Bopp CA, DePaola A (2012) Biochemical, serological, and virulence characterization of clinical and oyster Vibrio parahaemolyticus isolates. J Clin Microbiol 50:2343–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JL, Lüdeke CHM, Bowers JC, DeRosia-Banick K, Carey DH, Hastback W (2014) Abundance of Vibrio cholerae, V. vulnificus, and V. parahaemolyticus in oysters (Crassostrea virginica) and clams (Mercenaria mercenaria) from Long Island sound. Appl Environ Microbiol 80:7667–7682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadokura K, Rokutani A, Yamamoto M, Ikegami T, Sugita H, Itoi S, Hakamata W, Oku T, Nishio T (2007) Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl Microbiol Biotechnol 75:357–365

    Article  CAS  PubMed  Google Scholar 

  • Kaiser K, Benner R (2009) Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar Chem 113:63–77

    Article  CAS  Google Scholar 

  • Kaneko T, Colwell RR (1973) Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol 113:24–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Colwell RR (1978) The annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microb Ecol 4:135–155

    Article  Google Scholar 

  • Katoh H (1965) Studies on the growth rate of various food bacteria. 3. The growth of V. parahaemolyticus in raw fish meat. Nippon Saikingaku Zasshi 20:541–544

    Article  CAS  PubMed  Google Scholar 

  • Kaufman GE, Bej AK, DePaola A (2003) Oyster-to-oyster variability in levels of Vibrio parahaemolyticus. J Food Protect 66:125–129

    Article  CAS  Google Scholar 

  • Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, Gerdts G (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kishishita M, Matsuoka N, Kumagai K, Yamasaki S, Takeda Y, Nishibuchi M (1992) Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. Appl Environ Microbiol 58:2449–2457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein SL, Gutierrez West CK, Mejia DM, Lovell CR (2014) Genes similar to the Vibrio parahaemolyticus virulence-related genes tdh, tlh, and vscC2 occur in other Vibrionaceae species isolated from a pristine estuary. Appl Environ Microbiol 80:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein SL, Lovell CR (2017) The hot oyster: levels of virulent Vibrio parahaemolyticus strains in individual oysters. FEMS Microbiol Ecol (in press)

  • Kodama T, Rokuda M, Park KS, Cantarelli VV, Matsuda S, Iida T, Honda T (2007) Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 9:2598–2609

    Article  CAS  PubMed  Google Scholar 

  • LaRocque JR, Bergholz PW, Bagwell CE, Lovell CR (2004) Influence of host plant-derived and abiotic environmental parameters on the composition of the diazotroph assemblage associated with roots of Juncus roemerianus. Antonie Leeuwenhoek 86:249–261

    Article  PubMed  Google Scholar 

  • Lee C-T, Chen I-T, Yang Y-T, Ko T-P, Huang Y-T, Huang J-Y, Huang M-F, Lin S-J, Chen C-Y, Lin S-S, Lightner DV, Wang H-C, Wang AH-J, Wang H-C, Hor L-I, Lo C-F (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci U S A 112:10798–10803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-K, Liu P-C, Huang C-Y (2003) Vibrio parahaemolyticus infectious for both humans and edible mollusk abalone. Microb Infect 5:481–485

    Article  Google Scholar 

  • Lipp EK, Rivera ING, Gil AI, Espeland EM, Choopun N, Louis VR, Russek-Cohen E, Huq A, Colwell RR (2003) Direct detection of Vibrio cholerae and ctxA in Peruvian coastal water and plankton by PCR. Appl Environ Microbiol 69:3676–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Liu H, Pan Y, Xie J, Zhao Y (2016) Comparison of the effects of environmental parameters on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analysis. Front Microbiol 7:994

    PubMed  PubMed Central  Google Scholar 

  • Long RA, Azam F (2001) Microscale patchiness of bacterioplankton assemblage richness in seawater. Aq Microb Ecol 26:103–113

    Article  Google Scholar 

  • Lopez-Joven C, de Blas I, Furones MD, Roque A (2015) Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean coast. Front Microbiol 6:736

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovell CR, Friez MJ, Longshore JW, Bagwell CE (2001) Recovery and phylogenetic analysis of nifH sequences from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora. Appl Environ Microbiol 67:5308–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney JC, Gerding MJ, Jones SH, Whistler CA (2010) Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 76:7459–7465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Main CR, Salvitti LR, Whereat EB, Coyne KJ (2015) Community-level and species-specific associations between phytoplankton and particle-associated Vibrio species in Delaware’s inland bays. Appl Environ Microbiol 81:5703–5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Urtaza J, Bowers JC, Trinanes J, DePaola A (2010) Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses. Food Res Internatl 43:1780–1790

    Article  Google Scholar 

  • Martinez-Urtaza J, Blanco-Abad V, Rodriguez-Castro A, Ansede-Bermejo J, Miranda A, Rodriguez-Alvarez MX (2012) Ecological determinants of the occurrence and dynamics of Vibrio parahaemolyticus in offshore areas. ISME J 6:994–1006

    Article  CAS  PubMed  Google Scholar 

  • McCarter L (1999) The multiple identities of Vibrio parahaemolyticus. J Molec Microbiol Biotechnol 1:51–57

    CAS  Google Scholar 

  • McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29

    Article  CAS  PubMed  Google Scholar 

  • McCarter LL (2005) Multiple modes of motility: a second flagellar system in Escherichia coli. J Bacteriol 187:1207–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JB, DePaola A, Bopp CA, Martinek KA, Napolilli NP, Allison CG, Murray SL, Thompson ED, Bird MM, Middaugh JP (2005) Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N Engl J Med 353:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Kato T, Obara Y, Akiyama S (1969) In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol 100:1147–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller EF (2005) Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J Plank Res 27:27–35

    Article  CAS  Google Scholar 

  • Møller EF (2007) Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnol Oceanogr 52:79–84

    Article  Google Scholar 

  • Moran MA, Hodson RE (1990) Contributions of degrading Spartina alterniflora lignocellulose to the dissolved organic carbon pool of a salt marsh. Mar Ecol Prog Ser 62:161–168

    Article  CAS  Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA (2007) Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 20:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell SY, Fallon RD, Miller JD (1989) Decomposition and microbial dynamics for standing, naturally positioned leaves of the saltmarsh grass Spartina alterniflora. Mar Biol 101:471–481

    Article  Google Scholar 

  • Nishibuchi M, Fasano A, Russell RG, Kaper JB (1992) Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun 60:3539–3545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibuchi M, Janda JM, Ezaki T (1996) The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene. Microbiol Immunol 40:59–65

    Article  CAS  PubMed  Google Scholar 

  • Noriea NF, Johnson CN, Griffitt KJ, Grimes DJ (2010) Distribution of type III secretion systems in Vibrio parahaemolyticus from the northern Gulf of Mexico. J Appl Microbiol 109:953–962

    Article  CAS  PubMed  Google Scholar 

  • Okada N, Iida T, Park KS, Goto N, Yasunaga T, Hiyoshi H, Matsuda S, Kodama T, Honda T (2009) Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 77:904–913

    Article  CAS  PubMed  Google Scholar 

  • Okada N, Matsuda S, Matsuyama J, Park KS, Reyes C, Kogure K, Honda T, Iida T (2010) Presence of genes for type III secretion system 2 in Vibrio mimicus strains. BMC Microbiol 10:302. doi:10.1186/1471-2180-10-302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda J, Ishibashi M, Abbott S, Janda J, Nishibuchi M (1997a) Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J Clin Microbiol 35:1965–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda J, Ishibashi M, Hayakawa E, Nishino T, Takeda Y, Mukhopadhyay AK, Garg S, Bhattacharya SK, Nair GB, Nishibuchi M (1997b) Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 35:3150–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver J (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Ortmann AC, Metzger RC, Liefer JD, Novoveska L (2011) Grazing and viral lysis vary for different components of the microbial community across an estuarine gradient. Aquat Microb Ecol 65:143–157

    Article  Google Scholar 

  • Ottaviani D, Santarelli S, Bacchiocchi S, Masini L, Ghittino C, Bacchiocchi I (2005) Presence of pathogenic Vibrio parahaemolyticus strains in mussels from the Adriatic Sea, Italy. Food Microbiol 22:585–590

    Article  CAS  Google Scholar 

  • Ottaviani D, Leoni F, Serra R, Serracca L, Decastelli L, Rocchegiani E, Masini L, Canonico C, Talevi G, Carraturo A (2012) Nontoxigenic Vibrio parahaemolyticus strains causing acute gastroenteritis. J Clin Microbiol 50:4141–4143

    Article  PubMed  PubMed Central  Google Scholar 

  • Park KS, Iida T, Yaaichi Y, Oyagi T, Yamamoto K, Honda T (2000) Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect Immun 68:5742–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KS, Ono T, Rokuda M, Jang MH, Okada K, Iida T, Honda T (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72:6659–6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Hettiarachchi K, Bowers J, Jones J, Tamplin M, McKay R, Beatty W, Brohawn K, DaSilva L, DePoala A (2008) Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. J Food Microbiol 128:354–361

    Article  CAS  Google Scholar 

  • Persson OP, Pinhassi J, Riemann L, Marklund BI, Rhen M, Normark S, González JM, Hagström Å (2009) High abundance of virulence gene homologues in marine bacteria. Environ Microbiol 11:1348–1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cataluña A, Lucena T, Tarazona E, Arahal DR, Macián MC, Pujalte MJ (2016) An MLSA approach for the taxonomic update of the Splendidus clade, a lineage containing several fish and shellfish pathogenic Vibrio spp. Syst Appl Microbiol 39:361–369

    Article  PubMed  Google Scholar 

  • Piceno YM, Noble PA, Lovell CR (1999) Spatial and temporal assessment of diazotroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel electrophoresis analysis. Microb Ecol 38:157–167

    Article  CAS  PubMed  Google Scholar 

  • Puente F, Vega-Villasante F, Holguin G, Bashan Y (1992) Susceptibility of the brine shrimp Artemia and its pathogen Vibrio parahaemolyticus to chlorine dioxide in contaminated sea-water. J Appl Bacteriol 73:465–471

    Article  CAS  PubMed  Google Scholar 

  • Raghunath P (2015) Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front Microbiol 5:805. doi:10.3389/fmicb.2014.00805

    Article  PubMed  PubMed Central  Google Scholar 

  • Raimondi F, Kao JPY, Fiorentini C, Fabbri A, Donelli G, Gasparini N (2000) Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in vitro systems. Infect Immun 68:3180–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehnstam-Holm A-S, Godhe A, Härnström K, Raghunath P, Saravanan V, Collin B, Karunasagar I, Karunasagar I (2010) Association between phytoplankton and Vibrio spp. along the southwest coast of India: a mesocosm experiment. Aquat Microb Ecol 58:127–139

    Article  Google Scholar 

  • Rodriguez-Castro A, Ansede-Bermejo J, Blanco-Abad V, Varela-Pet J, Garcia-Martinez O, Martinez-Urtaza J (2010) Prevalence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environ Microbiol Rep 2:58–66

    Article  CAS  PubMed  Google Scholar 

  • Ronholm J, Petronella N, Chew Leung C, Pightling AW, Banerjee SK (2015) Genomic features of environmental and clinical Vibrio parahaemolyticus isolates lacking recognized virulence factors are dissimilar. Appl Environ Microbiol 82:1102–1113

    Article  CAS  PubMed  Google Scholar 

  • Salomon D, Gonzalez H, Updegraff BL, Orth K (2013) Vibrio parahaemolyticus Type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 8:e61086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal SC, Sen PC (1974) Human volunteer study on the pathogenicity of Vibrio parahaemolyticus. In: Fujino T, Sakaguchi G, Sakazaki R, Takeda Y (eds) International symposium on Vibrio parahaemolyticus. Saikon Publishing Co., Ltd., Tokyo, pp 227–230

    Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirai H, Ito H, Hirayama T, Nakamoto Y, Nakabayashi N, Kumagai K, Takeda Y, Nishibuchi M (1990) Molecular epidemiological evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 58:3568–3573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirikharin R, Taengchaiyaphum S, Sanguanrut P, Chi TD, Mavichak R, Proespraiwong P, Nuangsaeng B, Thitamadee S, Flegel TW, Sritunyalucksana K (2015) Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS One 10(5):e0126987. doi:10.1371/journal.pone.0126987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olvera R, Betancourt-Lozano M, Morales-Covarrubias MS (2015) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of culture shrimp (Litopenaeus vannamei) in northwestern Mexico. Appl Environ Microbiol 81:1–11

    Article  CAS  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  • Sudheesh PS, Xu H-S (2001) Pathogenicity of Vibrio parahaemolyticus in tiger prawn Penaeus monodon Fabricius: possible role of extracellular proteases. Aquaculture 196:37–46

    Article  CAS  Google Scholar 

  • Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Thompson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J (2004) Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54:919–924

    Article  CAS  PubMed  Google Scholar 

  • Torres R, Goni MA, Voulgaris G, Lovell CR, Morris JT (2004) Effects of low tide rainfall on intertidal zone material cycling. Coast Estuar Stud 59:93–114

    Google Scholar 

  • Turner JW, Good B, Cole D, Lipp EK (2009) Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092

    Article  CAS  PubMed  Google Scholar 

  • van den Broek MJM, Mossel DAA, Eggenkamp AE (1979) Occurrence of Vibrio parahaemolyticus in Dutch mussels. Appl Environ Microbiol 37:432–442

    Google Scholar 

  • Velazquez-Roman J, Leon-Sicairos N, Flores-Villasenor H, Villafauna-Rauda S, Canizalez-Roman A (2012) Association of pandemic Vibrio parahaemolyticus O3:K6 present in the coastal environment of northwest Mexico with cases of recurrent diarrhea between 2004 and 2010. Appl Environ Microbiol 78:1794–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Heang H, Criel G, Sorgeloos P, Verstraete W (2000) Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66:1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, The VibrioSea Consortium (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb Ecol 58:808–818

    Article  CAS  PubMed  Google Scholar 

  • Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Höfle MG, Pruzzo C (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6:21–30

    Article  PubMed  Google Scholar 

  • Vezzulli L, Colwell RR, Pruzzo C (2013) Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb Ecol 65:817–825

    Article  PubMed  Google Scholar 

  • Vezzulli L, Grande C, Reid PC, Hélaouët P, Edwards M, Höfle MG, Brettard I, Colwell RR, Pruzzo C (2016) Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113:E5062–E5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SX, Zhang XH, Zhong YB, Sun BG, Chen JX (2007) Genes encoding the Vibrio harveyi hemolysin (VHH)/thermolabile hemolysin (TLH) are widespread in vibrios. Wei Sheng Wu Xue Bao 47:874–881

    CAS  PubMed  Google Scholar 

  • West CKG (2012) Symbiotic associations and pathogenic potential of vibrios in the North Inlet estuary. Dissertation. University of South Carolina

  • Wolaver TG, Dame RF, Spurrier JD, Miller AB (1988) Sediment exchange between a euhaline salt marsh in South Carolina and the adjacent tidal creek. J Coast Res 4:17–26

    Google Scholar 

  • Xie Z, Hu C, Chen C, Zhang L, Ren C (2005) Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture system in Guangdong, China. Lett Appl Microbiol 41:202–207

    Article  CAS  PubMed  Google Scholar 

  • Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Yamamoto K, Honda T, Ming X (1994) Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene (trh). J Bacteriol 176:4757–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagihara I, Nakahira K, Yamane T, Kaieda S, Mayanagi K, Hamada D, Fukui T, Ohnishi K, Kajiyama S, Shimizu T, Sato M, Ikegami T, Ikeguchi M, Honda T, Hashimoto H (2010) Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J Biol Chem 285:16267–16274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yáñez R, Bastías R, Higuera G, Salgado O, Katharios P, Romero J, Espejo R, García K (2015) Amplification of tlh gene in other Vibrionaceae specie by specie-specific multiplex PCR of Vibrio parahaemolyticus. Electron J Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Zhang L, Orth K (2013) Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 16:70–71

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-H, Austin B (2005) Haemolysins in Vibrio species. J Appl Microbiol 98:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AM, DePaola A, Bowers JC, Krantz JA, Nordstrom JL, Johnson CN, Grimes DJ (2007) Variability of total and pathogenic Vibrio parahaemolyticus densities in northern Gulf of Mexico water and oysters. Appl Environ Microbiol 73:7589–7596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Savannah Klein for the help with the preparation of the figures and S.K., Shannon Pipes, and two anonymous reviewers for the helpful comments on the manuscript.

Work in this area by the Lovell group has been supported by the South Carolina Sea Grant Consortium, Award NA14oR4170082 Subaward N256 to CRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Lovell.

Ethics declarations

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovell, C.R. Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments. Appl Microbiol Biotechnol 101, 1781–1794 (2017). https://doi.org/10.1007/s00253-017-8096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8096-9

Keywords

Navigation