Skip to main content
Log in

Assessment of gridded precipitation and air temperature products for the State of Acre, southwestern Amazonia, Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper evaluated the precision and accuracy of two gridded monthly precipitation products (P-GPCC/V6 from the Global Precipitation Climatology Centre and P-UDEL/V3.01 from the University of Delaware—UDEL) and two monthly air temperature products (T-GHCN/V2 from the Global Historical Climatology Network and T-UDEL/V3.01 from UDEL) for the State of Acre, in southwestern Amazonia, northern Brazil. As reference, we used monthly climate series of these elements from January 1971 to December 2000, recorded at five conventional weather stations (CWS) of the Instituto Nacional de Meteorologia (INMET). Data were compared by linear regression; the coefficient of determination (r 2); Willmott’s index of agreement (d); Camargo’s performance index (c); the root-mean-square error (RMSE); mean systematic error (MSE); and unsystematic error (MSEu). Moreover, a trend analysis of the products at a seasonal and annual scale was performed. Regarding rainfall, it was found that GPCC as well as UDEL represents the mean and variability of rainfall throughout the series, but the performance of the product of GPCC was more homogenous and generally applicable for all stations. In relation to the air temperature standards, the precision of GHCN and UDEL was low, but the accuracy was moderate, according to statistical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida CT, Delgado RC, Oliveira Júnior JF, Gois G, Cavalcanti AS (2015) Avaliação das Estimativas de Precipitação do Produto 3B43-TRMM do Estado do Amazonas. Revista Floresta e Ambiente 22:279–286

    Article  Google Scholar 

  • Almeida CT, Oliveira-Júnior JF, Delgado RC, Cubo P, Ramos MC (2016) Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int J Climatol. doi:10.1002/joc.4831

    Article  Google Scholar 

  • Andrade-Júnior AS, Bastos EA, Sentelhas PC, Silva AAG (2003) Métodos de estimativa da evapotranspiração de referência diária para Parnaíba e Teresina, Piauí. RBAgro 11:63–68

    Google Scholar 

  • Andreoli RV, Souza RAF, Kayano MT, Candido LA (2012) Seasonal anomalous rainfall in the central and eastern Amazon and associated anomalous oceanic and atmospheric patterns. Int J Climatol 32:1193–1205

    Article  Google Scholar 

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate Status Report 2004, German Weather Service, Offenbach, Germany, pp 181–190

  • Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global landsurface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst Sci Data Discuss 5:921–998

    Article  Google Scholar 

  • Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo. RBAgro 5:89–97

    Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3(3):249–266

    Article  Google Scholar 

  • Cressman GF (1958) An operational objective analysis system. Mon Weather Rev 87:367–374

    Article  Google Scholar 

  • Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF (2008) Validation of high resolution satellite rainfall products over complex terrain. Int J Remote Sens 29(14):4097–4110

    Article  Google Scholar 

  • Duarte AF (2006) Aspectos da climatologia do Acre, Brasil, com base no intervalo 1971–2000. Rev Bras Meteorol 21:308–317

    Google Scholar 

  • Ducre-Robitaille JF, Vincent LA, Boulet G (2003) Comparison of techniques for detection of discontinuities in temperature series. Int J Climatol 23:1087–1101

    Article  Google Scholar 

  • Fan Y, Van Den Dool H (2008) A global monthly land surface air temperature analysis for 1948–present. J Geophys Res 113:D01103

    Article  Google Scholar 

  • Feidas H (2010) Validation of satellite rainfall products over Greece. Theor Appl Climatol 99(1–2):193–216

    Article  Google Scholar 

  • Foley J, Costa JMH, Delire C, Ramankutty N (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • FUNCEME-Fundação Cearense de Meteorologia. http://www.funceme.br/produtos/manual/oceanografia/Campos_TSM/Dados/Dipolo/dipole_servain. Accessed 10 Jan 2015

  • GPCC 1.0 × 1.0 Monthly Precipitation Totals. http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html. Accessed 25 Apr 2014

  • Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J Geophys Res 116:D19121

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in gauge corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Liebmann B, Marengo J (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4308–4318

    Article  Google Scholar 

  • Marengo JA (2005) The characteristics and variability of the atmospheric water balance in the Amazon basin: spatial and temporal variability. Clim Dyn 24:11–22

    Article  Google Scholar 

  • Marengo JA (2006) On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art. Rev Bras Meteorol 21:119

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Phil Trans R Soc B 3(63):1773–1778

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848

    Article  Google Scholar 

  • Matsuura K, Willmott CJ (2009) Terrestrial precipitation gridded monthly time series (Version 2.01). Newark: Center for Climatic Research, Department of Geography, University of Delaware, 2009. http://climate.geog.udel.edu/∼climate/. Accessed 21 Nov 2014

  • Mesinger F, DiMego G, Kalnay E, Mitchell K (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343

    Article  Google Scholar 

  • Multivariate Enos Index (MEI). http://www.esrl.noaa.gov/psd/data/climateindices/mei/. Accessed 23 Nov 2014

  • NOAA/NCEP GHCN CAMS Monthly Temperature. http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.GHCN_CAMS/.gridded/.deg0p5/. Accessed 25 Apr 2014

  • Peterson TC, Karl TR, Jamason PF, Knight R, Easterling DR (1998) First difference method: maximizing station density for the calculation of long-term global temperature change. J Geophys Res 103:967–974

    Google Scholar 

  • Prakash S, Mitra AK, Momin IM, Rajagopal EN, Basu S, Collins M, Turner AG, Achuta RK, Ashok K (2015) Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. Int J Climatol 35:2326–2338

    Article  Google Scholar 

  • Reboita MS, Gan MA, Rocha RP, Ambrizzi T (2010) Regimes de precipitação na América do Sul: uma revisão bibliográfica. Rev Bras Meteorol 25:185–204

    Article  Google Scholar 

  • Rocha EJP (2001) Balanço de umidade e influência de condições de umidade e influência de condições de contorno superficiais sobre a precipitação da Amazônia. São José dos Campos: INPE, p 210 (INPE-10243-T.DI/904)

  • Ropelewski CF, Janowiak JE, Halpert MS (1984) The Climate Anomaly Monitoring System (CAMS), report. Climate Analysis Center, NWS, NOAA, Washington, DC

    Google Scholar 

  • Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in situ gauge observations. In: Proceedings of the 2nd workshop of the international precipitation working group IPWG, Monterey, p 231–247

  • Rudolf B, Hauschild H, Rueth W, Schneider U (1994) Terrestrial precipitation analysis: operational method and required density of point measurements. In Desbois M, Desalmond F (eds) Global precipitations and climate change. NATO ASI Series I, vol 26. Springer, Berlin, pp 173–186

    Chapter  Google Scholar 

  • Saad SI, Rocha HR, Silva Dias MAF (2010) Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 highway region. Interact Terra 14:1–25

    Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM Press, New York, pp 517–524

  • Silva CMS, Lúcio PS, Spyrides MHC (2012) Distribuição espacial da precipitação sobre o Rio Grande do Norte: estimativas via satélites e medidas por pluviômetros. Revista Brasileira de Meteorologia 27(3):337–346

    Article  Google Scholar 

  • Souza EB, Kayano MT, Tota J, Pezzi L, Fischi G, Nobre C (2000) On the influences of the El Niño, La Niña and Atlantic Dipole pattern on the Amazonian rainfall during 1960–1998. Acta Amaz 30(2):305–318

    Article  Google Scholar 

  • Sun Q, Miao C, Qingyun D, Dongxian K, Aizhong Y, Zhenhua D, Wei G (2014) Would the ‘real’ observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environ Res Lett 9:015001

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34:2577–2586

    Article  Google Scholar 

  • Willmott CJ, Robeson SM (1995) Climatologically aided interpolation (CAI) of terrestrial air temperature. Int J Climatol 15:221–229

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation monthly and annual time series (1950–1999) (version 1.02). Centre for Climate Research, University of Delaware, Newark, NJ, USA

  • Willmott CJ, Legates DR, Rowe CM, Philpot WD (1985) Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer Cartogr 12:5–16

    Article  Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264

    Article  Google Scholar 

  • Zeng N, Yoon JH, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin JD (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3:014002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Instituto Nacional de Meteorologia—INMET, the Global Precipitation Climatology Centre—GPCC and the University of Delaware—UDEL for the rainfall and air temperature data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Tostes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tostes, J.O., Lyra, G.B., Oliveira- Júnior, J.F. et al. Assessment of gridded precipitation and air temperature products for the State of Acre, southwestern Amazonia, Brazil. Environ Earth Sci 76, 153 (2017). https://doi.org/10.1007/s12665-017-6467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6467-2

Keywords

Navigation